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Abstract. A fundamental issue in natural language processing and knowledge 
acquisition is recognizing whether a given string is an instance of a given type. 

In this paper, we present a solution to the typing problem by mining knowledge 

from an unstructured text corpus, and apply it in the context of type coercion in 
question answering. We describe a new generate-and-type framework, called 

TyCor (short for Type Coercion), in which candidate answers are initially 
produced without the use of answer type information, and subsequent stages 

check whether the candidate answer’s type can be coerced into the Lexical 
Answer Type (LAT) of the question. The TyCor framework consists of a suite 
of type checking algorithms and we describe two specific implementations that 

leverage the regularity and redundancy of linguistically expressed type 

relationships in a large corpus. We evaluate the performance of these TyCor 

algorithms for entity-typing over a broad domain test set and demonstrate their 
impact on end-to-end performance of our DeepQA system on blind Jeopardy! 
data. 
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1 Introduction 

Typing, the task of recognizing whether a given string is an instance of a given type is 

a fundamental problem in artificial intelligence (AI). Solving this problem in an open 

domain has implications for many areas in AI, such as reasoning, natural language 

processing, and knowledge acquisition. In this paper, we present a solution to the 

typing problem by mining knowledge from an unstructured text corpus, and apply it 

in the context of type coercion in question answering. 

Many open domain question answering (QA) systems have relied on a notion of 

Predictive Annotation [1] in which a fixed set of expected answer types are identified 

through manual analysis of a domain, and a background corpus is automatically 

annotated with possible mentions of these types before answering questions. These 

systems then analyze incoming questions for the expected answer type, mapping it 
into the fixed set used to annotate the corpus, and restrict candidate answers retrieved 

from the corpus to those that match this answer type using semantic search (IR search 

augmented with the ability to search for words tagged with some type).  



A large number of QA systems that have been developed under the influence of 

organized standard evaluation efforts such as TREC/TAC
1
, CLEF

2
, and NTCIR

3 

adopt this type-and-generate approach, which suffers from several problems. First, 

restricting the answer types to a fixed and typically small set of concepts makes the 

QA system brittle and narrow in its applicability and scope. Such a closed-typing 

approach does not work for open-domain Question Answering, and in particular the 

Jeopardy! problem, where answer types in questions span a very broad range of 

topics, are expressed using a variety of lexical expressions (e.g. “scarefest” when 
referring to horror movies) and are sometimes vague (e.g. “form”) or meaningless 

(e.g. “it”). Second, the QA system performance is highly dependent on the precision 

and recall of the predictive annotation software used, which acts as a candidate 

selection filter. In addition, when questions ask for types of answers not covered by 

the fixed set of types, the QA system either fails to generate answers at all, or uses 

some catchall type (e.g. “OTHER”) for which the rest of the system is typically not 

well suited.  In other words, performance on questions whose answer types are 

outside the fixed type system is significantly worse than when the answer type is in 

the type system. 

In contrast to the type-and-generate approach, we consider a generate-and-type 

framework, in which candidate answers are initially produced without use of answer 

type information, and subsequent stages check whether the candidate answer’s type 
can be coerced into the Lexical Answer Type (LAT) of the question. The framework 

is based loosely on the notion of Type Coercion [2] (TyCor). The most notable 

aspects of the approach are: it does not rely on a fixed type system, however it does 

not discard one when available and useful; it is a multi-strategy and multi-source 

approach, gathering and evaluating evidence in a generative way rather than a 

predictive one; it is not part of candidate generation, rather it is simply another way of 

analyzing and scoring candidate answers; it is not a hard filter, producing instead for 

each candidate answer a probability that it is (or is not) of the right type.  

When not relying on a fixed type system, developing a system that has good instance 

coverage for a wide variety of types becomes a key design point. In this paper, we 

present a novel typing framework, called TyCor. We provide a high-level architecture 
of the TyCor framework and discuss how it is integrated in our open-domain QA 

system, known as DeepQA [3]. The TyCor framework consists of a suite of type 

checking algorithms and we describe two specific implementations that leverage the 

regularity and redundancy of linguistic information in large corpora for typing. Since 

the corpora we use are large in size, we can obtain type information for a large set of 

instances, and the resulting TyCor components can provide coverage for even rare 

types. 

We briefly describe the TyCor algorithms for the two components, evaluate their 

performance for entity-typing over a broad domain test set, and demonstrate their 

impact on end-to-end performance of our DeepQA system on blind Jeopardy! data. 

                                                        
1 http://trec.nist.gov/ 
2 http://www.clef-campaign.org/ 
3 http://research.nii.ac.jp/ntcir/index-en.html 



The key contribution of this paper is the definition of a novel Type Coercion (TyCor) 

framework for open domain Question Answering, and showing how lexical type 

information derived from a large text corpus (using traditional techniques) can be 

integrated into this TyCor framework to boost end-to-end QA performance. 

2 Background: Open Domain Question Answering  

Our aim was to build a QA system capable of rivaling expert human performance at 

answering open-domain questions. As a test bed, we chose the challenging TV quiz 

show Jeopardy!, whose questions cover a wide range of topics and are expressed 

using rich, complex natural language expressions. A characteristic of Jeopardy! 
questions is that nearly any word in the English language can be used as an answer 

type, e.g. consider: 

 

• Invented in the 1500s to speed up the game, this maneuver involves 2 pieces 

of the same color. (answer: castling) 

• The first known airmail service took place in Paris in 1870 by this 

conveyance. (answer: hot-air balloon) 

• When hit by electrons, a phosphor gives off electromagnetic energy in this 

form (answer: light) 

 

Given this variability, it is to be expected with predictive annotation that we cannot 
reliably predict what types there are going to be and what their instances are.  We 

need to be open and flexible about types, treating them as a property of the question 

and answer combined.  In other words, instead of finding candidates of the right type, 

we want to find candidates (in some way) and judge whether each one is of the right 

type by examining it in context with the answer type from the question. Furthermore, 

we need to accommodate as many sources as possible that reflect the same descriptive 

diversity as these questions. These were the underlying principles of the type coercion 

methodology in our QA system, known as DeepQA. 

2.1 DeepQA 

DeepQA is a massively parallel probabilistic evidence-based architecture designed to 

answer open domain questions. It consists of the following major stages (more details 

can be found in [3]): 

 
Question Analysis: The first stage of the pipeline performs a detailed analysis to 

identify key characteristics of the question (such as focus, lexical answer type, 

question class, etc.) used by later stages of the pipeline.  The focus is the part of the 

question that refers to the answer, and typically encompasses the string representing 

the lexical answer type (LAT).  The system employs various lexico-syntactic rules for 

focus and LAT detection, and also uses a statistical machine-learning model  to refine 



the LAT(s). Like all parts of our system, LAT detection includes a confidence, and all 

type scores are combined with LAT confidence 

 

Hypothesis (Candidate) Generation: One of the significant differences between our 

approach and that of many previous QA systems is the manner in which candidate 

answers are generated.  In type-and-generate based approaches, the question is 

analyzed and a semantic answer type (SAT) from a predefined set of types is 

identified.  A background corpus, which has been pre-annotated with these types, is 
searched using keywords from the question and the SAT as a required term.  In other 

words, only candidate answers that, during corpus analysis, are known to match the 

SAT, will be returned as candidates.   

 

In our QA system, processing of type information has been moved from candidate 

generation to answer scoring. For the candidate generation step, the system issues 

several queries derived from question analysis results to search its corpus for relevant 

documents and passages, and it uses a variety of candidate generators to produce a list 

of answer candidates to the question.  

 

Hypothesis and Evidence Scoring: Answer scoring is the step in which all 

candidates, regardless of how they were generated, are evaluated.  During the answer-
scoring phase, many different algorithms and sources are used to collect and score 

evidence for each candidate answer.  Type information is just one kind of evidence 

that is used for scoring. Other dimensions of evidence include temporal and spatial 

constraints, n-grams, popularity, source reliability, skip-bigrams, substitutability, etc. 

 

Candidate Ranking: Finally, machine-learning models are used to weigh the 

analyzed evidence and rank the answer candidates. The models generate a confidence 

for each answer candidate being the correct answer to the given question, and the 

system answers with the top-ranked candidate. The system can also choose to refrain 

from answering if it has a low confidence in all of its candidates. 

2.2 Type Coercion (TyCor) 

The TyCor framework consists of a suite of answer scoring components that take a 
Lexical Answer Type (LAT) and a candidate answer, and return a probability that the 

candidate’s type is the LAT, using a collection of unstructured, semi-structured and 

structured sources. Note that since language does not distinguish between 

instantiation and subclass, the TyCor components must allow for this, and given a 

candidate answer that refers to a class, it should be given a high score if it can be 

interpreted as a subclass or instance of the LAT. As mentioned in the previous 

subsection, LAT detection produces a confidence, so each (answer, LAT) score is 

modified by the LAT confidence. 

 

Each TyCor component uses a source of typing information and performs four steps: 

 



Entity Disambiguation and Matching (EDM): The most obvious, and most error-

prone, step in using an existing source of typing information is to find the entity in 

that source that corresponds to the candidate answer. This step is especially critical 

for TyCor components that rely on structured or semi-structured resources. Since the 

candidate is just a string, this step must account for both polysemy (the same name 

may refer to many entities) and synonymy (the same entity may have multiple 

names).  Each source may require its own special EDM implementations that exploit 

properties of the source, for example DBPedia encodes useful naming information in 
the entity id.  EDM implementations typically try to use some context for the answer, 

but in purely structured sources this context may be difficult to exploit.  

 

Predicate Disambiguation and Matching (PDM): Similar to EDM, this step finds the 

type in the source that corresponds to the LAT found.  In some sources this is the 

same algorithm as EDM; in others, type looking requires special treatment. In a few, 

especially those using unstructured information as a source, the PDM step just returns 

the LAT itself. In type-and-generate, this step corresponds to producing a semantic 

answer type (SAT) from the question.  PDM corresponds strongly to notions of word 

sense disambiguation with respect to a specific source. 

 

Type Retrieval (TR): Once an entity is retrieved from the source, if applicable the 
types of that entity must be retrieved.  For some TyCors, like those using structured 

sources, this step exercises the primary function of the source and is simple. In others, 

like unstructured sources, this may require parsing or other semantic processing of 

some small snippet of natural language. 

 

Type Alignment: The results of the PDM and TR steps must then be compared to 

determine the degree of match.  In sources containing e.g. a type taxonomy, this may 

include checking the taxonomy for subsumption, disjointness, etc.  For other sources, 

alignment may utilize resources like Wordnet for finding synonyms, hypernyms, etc. 

between the types.  

 
Each of the steps above generates a score reflecting the accuracy of its operation, 

taking into account the uncertainty of the entity mapping or information retrieval 

process, and the final score produced by each TyCor component is a combination of 

the four step scores. This score is typically computed as the product, though a more 

effective combination can be learnt using machine learning by training on 

corresponding ground truth (entity typing data).  

3 Mining Knowledge from Unstructured Sources 

The regularity and redundancy of linguistically expressed is-a information in a large 

amount of unstructured sources often provide direct evidence that an answer is a 

member of a LAT, and thus can be very informative for the type coercion task. For 

this reason, we built a large shallow semantic resource called Prismatic that was 



automatically extracted from text, specifically leveraging an isa relation detector 

using syntactic patterns which was applied as part of the text processing. 

3.1 Prismatic Resource 

Prismatic [4] is a large scale lexicalized relation resource mined from over 30 GB of 

text. It is built using a suite of NLP tools that includes a dependency parser, a rule 

based named entity recognizer and a coreference resolution component. Prismatic is 

composed of frames which are the basic semantic representation of lexicalized 

relations and their syntactic context. There are approximately 1 billion frames in our 

current version of Prismatic. 
 

Prismatic is built using a three step process: corpus processing, frame extraction and 

frame cut extraction. Figure 1 outlines the Prismatic pipeline. 

 

 

Figure 1.  The Prismatic pipeline 

 

The key step in the Corpus Processing stage is the application of a dependency 

parser which is used to identify the frame slots for the Frame Extraction stage. A rule 

based Named Entity Recognizer (NER) is used to identify the types of arguments in 

all frame slot values. This type information is then registered in the Frame Extraction 

stage to construct intentional frames. Additionally, semantic relations, such as ‘isa’ 

relations in particular, are extracted by semantic relation detectors. 

 
The next step of Prismatic is to extract a set of frames from the parsed corpus. A 

frame is the basic semantic unit representing a set of entities and their relations in a 

text snippet. A frame is made of a set of slot value pairs where the slots are 

dependency relations or semantic relations extracted from the corpus processing step 

and the values are the terms from the sentences or types they are annotated with. 

Table 1 shows the extracted frame based on the parse tree in figure 2. 



 

One of the main reasons for extracting a large amount of frame data from a corpus 

is to induce interesting knowledge patterns by exploiting redundancy in the data. For 

example, we would like to learn that things that are annexed are typically regions, i.e., 

a predominant object-type for the noun + preposition “annexation of” is “Region” 

where “Region” is annotated by a NER. To do this kind of knowledge induction, we 

first need to abstract out specific portions of the frame—in this particular case, we 

need to isolate and analyze the noun + preposition + object-type relationship. Then, 
given a lot of data, and frames containing only the above relationship, we hope to see 

the abstracted frame [noun=“annexation”, preposition=“of”, object-type=“Region”] 

occur very frequently.  

 

To enable this induction analysis, we define frame-cuts. For example, we define an 

N-P-OT frame cut, which when applied to a frame only keeps the noun (N), 

preposition (P) and object-type (OT) slots, and discards the rest. Similarly, we define 

frame-cuts such as S-V-O, S-V-O-IO, S-V-P-O etc. (where S - subject, V - verb, O - 

object, IO - indirect object). For example, we can use the V-OT frame cut to learn that 

a predominant object-type for the verb “annex” is also “Region”, by seeing lots of 

frames of the form [verb=“annex”, object-type=“Region”] in our data. Frames can 

specify optional value constraints for slots. For example, we can define an S-V-O 
frame cut, where both the subject (S) and object (O) slot values are constrained to be 

proper nouns, thereby creating strictly extensional frames, i.e. frames containing data 

about instances, e.g., [subject=“United States” verb=“annex” object=“Texas”]. The 

opposite effect is achieved by constraining S and O slot values to common nouns, 

creating intensional frames such as [subject=“Country” verb=“annex” 

object=“Island”]. The separation of extensional from intensional frame information is 

desirable, both from a knowledge understanding and an applications perspective, e.g. 

the former can be used to provide factual evidence in tasks such as question 

answering, while the latter can be used to learn entailment rules as seen in the 

“annexation” case. 

 



 

Figure 2.  The parse tree of the sentence In 1921, Einstein received the Nobel 

Prize for his original work on the photoelectric effect. 

 

Frame 01 

verb receive 

subj Einstein 

    type PERSON / SCIENTIST 

obj Nobel Prize 

mod_vprep In 

    objprep 1921 

        type YEAR 

mod_vprep For 

    objprep Work 

 

Frame 02 

noun Work 

mod_ndet His / Einstein 

mod_nobj On 

    objprep Effect 

Table 1.  Frames extracted from Dependency Parse in Figure 

 



3.2 Syntactic pattern based IS-A relation detection  

A semantic relation can be conceptualized as a labeled edge between two terms.  

Processes like search query generation, answer lookup, passage scoring, semantic 

constraints inference, and others, benefit from such labeled associations between text 

elements, which abstract away from the syntax and normalize over the numerous 
ways in which essentially the same facts can be expressed with language [5], [6], [7]. 

 

We distinguish between deep and shallow semantic relations. Deep semantic relations 

appeal to a specific domain (like relationships between animate agents and works of 

art in an arts-and-entertainment domain, [8, 9]). Shallow semantic relations do not so 

much map to a particular type ontology, but instead detect certain syntactic contexts 

indicative of alternative surface realizations for essentially the same semantic 

relationship ([6]).  Within the latter category is a set of universal ontological relations, 

such as 'instanceOf', 'subtypeOf', 'sameAs', which are all interpreted as variations 

within the ‘isa’ detection task for Prismatic.  Examples of these are found in questions 

like: 

 

• Giuseppina Streppoini, a prima donna in “Nabucco”, married this famous 

Guiseppi in 1859. 

• Very simply, it's any plant, such as crabgrass, that grows where it's not 

wanted. 

• John F. Kennedy was elected the first Catholic president of the United 

States. 

 

Our relational analysis would derive, respectively,  

 

 (1) instanceOf(prima donna, Giuseppina Streppoini),  

 (2) subtypeOf(plant, crabgrass), 
 (3) sameAs(John F. Kennedy, president). 

 

At the level of recognition, we maintain some distinction between the different 

relations.  Thus, one of the arguments of ‘instanceOf’ will typically be a named entity, 

while both arguments of ‘subtypeOf’ will be lexical types.  The ‘sameAs’ relation 

captures a broader range of coreferencial locutions, mediated by lexical context of 

verbs like “be”, “become”, “elect”, and so forth.  Such distinctions are important to 

some DeepQA components; as far as Prismatic is concerned, however, all three 

extractions above are instances of an ‘isa’ relation. 

 

A relation can often be expressed in multiple ways lexically and syntactically.  In 
many cases, however, basic principles of economy of expression and/or conventions 

of genre will ensure that certain systematic ways of expressing a relation are 

repeatedly used, to the extent that regularities in expression can be observed and 

categorized.  This has a particular consequence in the knowledge mining setting for 

Prismatic, where the sheer volume and redundancy of data will ensure that even with 



a relatively small number of high-precision patterns, a large number of relation 

instances will be detected, to reliably inform the aggregation processes. 

 

We have, therefore, chosen to build a rule-based ‘isa’ recognizer (building upon the 

three relation types illustrated above), based on a relatively small number of precise—

and productive—patterns, in the tradition of [10].  We are aided in this by our state-

of-the-art parser [8], which can correctly identify appropriate syntactic configurations 

and pinpoint pattern elements as eventual arguments. 
 

We have identified five main recognition rule groups (shown below) to capture the 

“isa” relation. Each rule group targets a set of distinct syntactic realizations of relation 

expressions characterizing the group. Below we provide illustrative examples for each 

of the groups. 

 

 appositiveRule : 

• The prophet of this religion, Mirza Husayn Ali, is known as Baha'u'llah or 

"Glory of God" to the faithful. 
o instanceOf(prophet, Mirza Husayn Ali). 

  

 includesRule : 

• This author's thrillers turned into films include “Phantoms” and “Demon 

Seed”. 
o instanceOf(thriller, Phantoms), 

o instanceOf(thriller, Demon Seed). 

• Some woody plants like conifers reproduce by means of exposed seeds. 
o subtypeOf(plant, conifer). 

  

 catInstanceRule : 

• Singer/actor Sting played Feyd-Rautha in this David Lynch film based on a 

Frank Herbert novel. 
o instanceOf(singer, Sting), 

o instanceOf(actor, Sting). 

• Young filmmakers Daniel Myrick and Eduardo Sanchez created quite a 

frenzy with this film. 
o instanceOf(filmmaker, Daniel Myrick), 

o instanceOf(filmmaker, Eduardo Sanchez). 

  

 sameAsRule :  

• Deng Xiaoping becomes the first top Communist leader from China to visit 

the US. 
o instanceOf(leader, Deng Xiaoping). 

  

 altNamesRule : 

• This itchy inflammation is medically known as conjunctivitis. 
o subtypeOf(iflammation, conjunctivitis). 

• The American Indian name for this peak is Denali. 
o instanceOf(peak, Denali). 



 

4 Prismatic TyCor  

In order to utilize the knowledge in a large corpus for the type coercion task, we 

augmented the Prismatic resource to include ‘isa’ relations using the syntactic pattern 

based relation detector as part of the corpus processing step. Consequently, the frames 

extracted from the corpus can include ‘isa’ relations as well. The ‘isa’ relation is 

usually annotated between two nouns to indicate that the first noun is of the type 

denoted by the second noun, and is captured using a noun-isa frame cut.  

 
We have developed a TyCor component to use the augmented Prismatic. It takes a 

candidate answer and a lexical answer type (LAT) as input, and returns a score 

indicating the likelihood of the candidate answer being an instance of the LAT. The 

Prismatic TyCor computes this score p as the following: 

 

� �  
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�
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where Cmatched is the number of ‘isa’ relation occurrences that show the candidate 

answer is of the LAT in Prismatic, and Ctotal is the total number of ‘isa’ relation 

occurrences that show the candidate answer is of any type in Prismatic. 

 

Unlike TyCor components that use structured or semi-structured resources, the Entity 

Disambiguation and Matching step, the Predicate Disambiguation and Matching step 

and Type Retrieval step are very simple. Prismatic TyCor does not use any type 

system, and it uses the candidate answer string as the candidate type after the Type 

Retrieval step. Similarly, it does not map the LAT to a type in a type system; it uses 

the LAT string as the type after the Predicate Disambiguation and Matching step. 

Prismatic TyCor does the bulk of its work during the Type Alignment step.  

 

Instead of relying on predefined taxonomy for subsumption tests, Prismatic TyCor 

utilizes the subsumption relations directly expressed between two strings in large 

amount of text. This approach has advantages and disadvantages. First, the large 

corpora size allows Prismatic TyCor to have wider coverage than most fixed 

taxonomies. This is particular useful in open domain QA, such as Jeopardy! because 

of the many rare LATs. Second, its results are not compounded by the errors in EDM, 

PDM or TR steps since these steps are trivial in Prismatic TyCor. The main source of 
errors is from the ‘isa’ relation detector which is mitigated by the redundancy in large 

corpus. This approach also has a disadvantage—it does not take the context of the 

question into consideration. Prismatic TyCor uses the overall aggregate statistics from 

the whole corpus, but it does not consider any clue contexts. For example, although 

the string George Washington may refer to a president, a general, a bridge, etc., in a 

particular question involving college basketball, George Washington is more likely to 

be a university basketball team. Another TyCor component, Passage TyCor, addresses 



this potential deficiency by using both context and the knowledge mined from 

unstructured text, and it is described next. 

5 Passage TyCor 

Passage TyCor uses the same syntactic pattern-based relation detector that Prismatic 

TyCor uses. However, unlike Prismatic TyCor, Passage TyCor only considers 

occurrences of these syntactic patterns in contexts that DeepQA’s passage search 

algorithms [6] have identified as relevant to the question being asked.  This approach 

provides less coverage than Prismatic TyCor, since it is using only a small fraction of 

our full text corpus.  However, it has a significant advantage when dealing with 
ambiguous answers or types, because the senses of the words used in the passages 

found by search are likely to be the ones that are most relevant to the question being 

asked. 

 

In addition, we configure Passage TyCor to be more aggressive in its Type Alignment 

than we do for Prismatic TyCor.  Specifically, we use a variety of resources to 

determine equivalent lexical types.  This partially compensates for the fact that we use 

only a few selected passages from the corpus as our source of type information.  For 

example, if we have a question asking for a building and a retrieved passage saying 

“Rockefeller Center is one of the most spectacular edifices in midtown Manhattan,” 

we will conclude that “Rockefeller Center” is an answer that satisfies the question’s 

type requirement.  Passage TyCor draws this conclusion because the syntactic pattern-
based relation detector (run during preprocessing) finds an ‘isa’ relation between 

“Rockefeller Center” and “edifice” in this passage, and then at run time (after 

DeepQA’s passage retrieval has determined that this passage appears to be relevant to 

the clue), Passage TyCor uses its synonym resources to determine that “building” and 

“edifice” are synonymous. 

6 Experiments 

6.1 Impact on End-to-End Question Answering 

Table 2 shows the impact of the Prismatic and Passage TyCor answer scorers on end-

to-end Jeopardy! question answering.  The data shows accuracy (percentage of all 
questions that are answered correctly) on 3,508 randomly selected, previously unseen 

Jeopardy! questions.  The first set of results are from a baseline system that includes 

all of DeepQA’s question analysis, search, and candidate generation, but none of its 

answer scoring components except for the ones listed in the column headings.  The 

second set of results are from the full Watson question answering system with all of 

the answer scoring components except for TyCor components.  In both sets, the left 

column is for a system that includes no TyCor component, the second column 



includes only Prismatic TyCor, the third includes only Passage TyCor, and the fourth 

includes Prismatic and Passage TyCor. 

 
 No TyCor Prismatic TyCor Passage TyCor Both TyCors 

Baseline System 50.1% 53.9% (+3.9%) 51.2% (+1.1%) 54.6% (+4.5%) 

Full System 65.6% 68.0% (+2.4%) 66.6% (+1.0%) 68.1% (+2.5%) 

Table 2 Impact of Prismatic and Passage TyCor answer scorers on question 

answering accuracies 

 

In all cases, the difference between either/both TyCor and no TyCor is statistically 

significant (p < .05 using McNemar’s test with Yates’ correction for continuity).  The 

impact of both TyCors is significantly greater than the impact of either TyCor alone 

in the baseline configuration (only).  The baseline configuration is generally better for 

measuring subtle distinctions such as showing (as we do here) that Passage TyCor and 

Prismatic TyCor are complementary in the sense that an end-to-end question 

answering system can perform better with both components than it does with either 

component alone.  The results on the full system are more muted but are useful for 

getting a more realistic sense of the rough magnitude of the usefulness of these 

components in a complete system. 

8. Related Work 

TextRunner [11] is an information extraction system which automatically extracts 

relation tuples over a massive web dataset in an unsupervised manner. TextRunner 

contains over 800 million extractions [12] and has proven to be a useful resource in a 

number of important tasks in machine reading such as hypernym discovery [13], and 

scoring interesting assertions [12]. TextRunner works by automatically identifying 

and extracting relationships using a conditional random field (CRF) model over 

natural language text. As this is a relatively inexpensive technique, it allows rapid 

application to web-scale data.  

DIRT (Discovering Inference Rules from Text) [14] automatically identifies 

inference rules over dependency paths which tend to link the identical arguments. The 

technique consists of applying a dependency parser over 1 GB of text, collecting the 

paths between arguments and then calculating a path similarity between paths. DIRT 
has been used extensively in recognizing textual entailment (RTE). 

Never Ending Language Learner (NELL) [15] is another system that acquires 

knowledge automatically. It starts with a set of seed categories and relations with a 

handful of examples, and it extracts new instances of categories and relations from 

millions of web pages. 

Another recent system, Background Knowledge Base (BKB) [16], also extracts 

parts of the parsed structure from a domain specific corpus as knowledge source to 

improve machine reading systems. 

Prismatic is similar to TextRunner and DIRT in that it may be applied 

automatically over massive corpora. At a representational level it differs from both 



TextRunner and DIRT by storing full frames from which n-ary relations may be 

indexed and queried. Prismatic differs from TextRunner as it applies a full 

dependency parser in order to identify dependency relationships between terms. In 

contrast to DIRT and TextRunner, Prismatic also performs co-reference resolution in 

order to increase coverage for sparsely-occurring entities and employs a named entity 

detector (NED) and relation extractor on all of its extractions to better represent 

intensional information. 

Prismatic is similar to NELL in the sense that it also extracts instances of 
categories and relations automatically from a large corpus. However, the categories 

and relations are open-ended for Prismatic; they are not limited to the set of given 

examples for NELL.  

Prismatic is similar to BKB in that both use parser outputs to extract knowledge. 

They differ in terms of the corpora they use and their applications. BKB uses a 

domain-specific corpus to focus on aggregate statistics relevant to that domain to 

improve machine reading systems’ performance. Prismatic uses an open domain 

general purpose corpus to obtain overall aggregate statistics of text usage. 

 

Automatic detection of hyponymy (isa) and meronymy (part-of) relations mark the 

oldest work in relation extraction.  The idea of exploting the regular patterns 

specifying a relationship between two entities originally belongs to Amsler [17], who 
leveraged the structure of dictionary definitions for automatic taxonomy construction.  

This was implemented, on a large scale, by Chodorow et al. [18], as a system for 

automatic computational lexicon construction.  These were systems with virtually 

100% precision (every entry in a dictionary is correct), but less than desired coverage 

(a dictionary only has so many entries).  With the emergence and growth of on-line 

text, Hearst [10] pioneered the natural extension of the idea, focusing on patterns in 

freely occurring text. 

 

This idea has had several different incarnations, all motivated by the increasing 

volume of on-line resources: a situation where noise mandates seeking a balance 

between high precision and high recall of reliably identifying relation instances, 
preferably with minimal supervision.  The overall trend has been to derive patterns 

from seeds: for instance, Ravichandran and Hovy [19] use the notion of pairing 

question elements with their answers, across a range of common question types.  

Scaling this strategy to the Web yields reasonable relation instances for specific 

relations like ‘birthdate’, ‘inventorOf’, and ‘location’; noise, however, leads to low 

precision--especially for not so specific relations, like ‘isa’.  More recently, Pantel and 

Pennachiotti [20] propose a different notion of seeding, grounded in “generic 

patterns”: i.e. patterns with high recall and low precision.  The noise which comes 

with broad coverage is counteracted by a novel filtering algorithm; again, the scale of 

the Web facilitates noise control.  The work seeks applicability to a set of relations 

broader than just ‘isa’. 
 

Our approach, already different in the special prominence it gives to finding 

instances of ‘isa’ in particular, also appeals to the scale of the Web, remaining closest 

to Hearst's original proposal.  We have a relatively small number of (precise) patterns, 

but assume that the redundancy of on-line data will generate more than enough 



instances whose aggregate statistics will support probabilities of them being correct. 

Also, our ‘isa’ relation detection is done by analyzing a deep syntactic parse of the 

sentence (in particular, the predicate argument structure [8]), whereas earlier work 

(starting with Hearst’s patterns) is based on shallower matching strategies, such as 

constituent analysis over part-of-speech tags stream, and/or other linear pattern 

interpretation techniques. Finally, in contrast to most of the work seeking to identify 

‘isa’ relations, ours is embedded in a component of an operational open domain 

question answering system. 

9. Conclusion and Future Work 

In this paper, we have presented a broad domain solution to the entity typing 

problem by mining knowledge in a large unstructured text corpus, and applied it in 

the context of type coercion in question answering. We introduced the generate-and-

type framework used in the DeepQA question answering system. This framework 

allows candidate answers to be produced without the use of answer type information, 

with subsequent stages (TyCor components) determining whether the candidate 

answer’s type can be coerced into the Lexical Answer Type of the question. We then 

described how lexical type knowledge from a large background knowledge source 

(Prismatic) and from supporting passages for candidate answers can be integrated into 

the TyCor framework. Our evaluation on 3,508 randomly selected, previously unseen 

Jeopardy! questions shows that our corpus based TyCor solution has significant end-

to-end impact on QA performance.  
 

In the future, we plan to augment the frames in Prismatic with contextual 

information which shall enable Prismatic TyCor to take the question context into 

consideration during matching. We also plan to include a statistical relation detector 

in addition to the pattern based relation detector to increase the coverage of “isa” 

relation annotation. We expect these two changes to increase both the precision and 

recall of the Prismatic TyCor. 
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