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Abstract. Most knowledge sources on the Data Web were extracted
from structured or semi-structured data. Thus, they encompass solely
a small fraction of the information available on the document-oriented
Web. In this paper, we present BOA, an iterative bootstrapping strat-
egy for extracting RDF from unstructured data. The idea behind BOA
is to use the Data Web as background knowledge for the extraction of
natural language patterns that represent predicates found on the Data
Web. These patterns are used to extract instance knowledge from natu-
ral language text. This knowledge is �nally fed back into the Data Web,
therewith closing the loop. We evaluate our approach on two data sets
using DBpedia as background knowledge. Our results show that we can
extract several thousand new facts in one iteration with very high ac-
curacy. Moreover, we provide the �rst repository of natural language
representations of predicates found on the Data Web.

1 Introduction

While the document-oriented Web aimed at providing information targeted to-
wards humans, the Linked Data Web (short: Data Web) aims to provide knowl-
edge in both human- and machine-readable form. Several approaches have been
developed to populate the Data Web. Most of these approaches rely on trans-
forming semi-structured and structured data available on the Web into RDF.
The results of the utilization of these approaches can be seen in the signi�cant
growth of the Linked Data Cloud from from 12 knowledge bases to 203 knowl-
edge bases in less than four years [9]. While these approaches provide a viable
mean to expose semi-structured and structured data on the Data Web, they
su�er of one fatal drawback: They can only be applied to 15-20% [3, 8] of the
information on the Web, as the rest of the information in the document-oriented
Web is only available in unstructured form.

In this paper, we present the an approach that can bootstrap the knowledge
available on the Data Web by harvesting triples from unstructured data. Our
approach, dubbed BOA1 (Bootstrapping the Web of Data), starts with the triples
available on the Data Web. Then, it extracts natural language patterns that
express the predicates found in the triples already available on the Data Web.

1 http://boa.aksw.org



By using a combination of these patterns and Named Entity Recognition, our
approach can identify the labels of instances that stand in the relation expressed
by any given predicate. The resulting novel instance knowledge can be �nally
fed back into the Data Web and reused for extracting even more patterns and
triples as well as correcting existing knowledge. Our approach is completely
agnostic of the knowledge base upon which it is deployed. It can thus be used
on the whole Data Web. In addition, it can be used to extract natural language
representations of predicates from virtually any language if provided with a
Named Entity Recognition service.

Our main contributions are:

1. We present the an approach to bootstrapping the Data Web. Our approach
uses knowledge from the Data Web to extract even more knowledge that can
be inserted directly into the Data Web.

2. We provide the �rst knowledge base of natural language representations of
predicates found on the Data Web (especially in DBpedia).

3. We present an evaluation of the quality of the natural language patterns ex-
tracted automatically by our approach and show that we can extract knowl-
edge from text with a precision of up to 99%.

The rest of this paper is structured as follows: In Section 2, we give an
overview of previous work that is related to our approach. Thereafter, in Section
3, we present our bootstrapping framework and several insights that led to the
approach currently implemented therein. In Section 4 we evaluate our approach
on two di�erent data sets and show its robustness and accuracy. Finally, we
discuss our results and conclude.

2 Related Work

The extraction of entities from natural language (NL) text has been the focus
of Information Extraction for a considerable amount of time. Consequently, a
multitude of algorithms and tools have been developed for this purpose over the
last decades. Three main categories of natural language processing (NLP) tools
play a central role during the extraction of knowledge from text: Keyphrase
Extraction (KE) algorithms aim to detect multi-word units that capture the
essence of a document [12, 11]. Named Entity Recognition (NER) approaches
try to discover instances of prede�ned classes of entities [16, 7]. Finally, Relation
Extraction (RE) approaches are used to discover the relations between the enti-
ties detected by using NER [13, 17]. While these three categories of approaches
are suitable for the extraction of facts from NL, the use of the Data Web as
source for background knowledge for fact extraction is still in its infancy. [13]
coined the term �distant supervision� to describe this paradigm but developed
an approach that led to extractors with a low precision (approx. 67.6%). The
most precise approaches for RE rely on supervised machine learning [15, 19, 5,
6]. Thus, they can only extract a small fraction of the knowledge on the Web
due to the scarcity of large training datasets.



In addition to the work done by the NLP community, several frameworks
have been developed with the explicit purpose of bridging the gap between NLP
and the Data Web by extracting RDF and RDFa out of NL [10, 1]. Services such
as Alchemy2, OpenCalais3, Extractiv4 and FOX5, allow to extract structured
information from text. Yet, they mostly rely on classical NLP algorithms in
combination with URI lookup on the Data Web. Thus, they are also un�t to
harvest RDF from the Web at large scale due to restrictions with respect to
coverage.

The problem of extracting knowledge from the Web at large scale, which is
most closely related to this paper, has been the object of recent research, espe-
cially in the projects ReadTheWeb and PROSPERA. The aim of the ReadTheWeb
project6 [4] is to create the never-ending language learner NELL that can read
webpages. To achieve this goal, NELL is fed with the ClueWeb097 data set (1
billion web pages, 10 languages, approximately 5TB) cyclically. The input data
for NELL consisted of an initial ontology that contained hundreds of categories
and relations as well as a small number of instances for each category and rela-
tion. In each iteration, NELL uses the available instance knowledge to retrieve
new instances of existing categories and relations between known instances by
using pattern harvesting. The approach followed by PROSPERA [14] is simi-
lar to that of NELL but relies on the iterative harvesting of n-grams-itemset
patterns. These patterns allow to generalize NL patterns found in text without
introducing more noise into the patterns during the generalization process. In
addition, PROSPERA uses reasoning to discard statements that are logically
inconsistent with the available knowledge.

Our approach goes beyond the state of the art in two key aspects. First,
it is the �rst approach that uses the Data Web as background knowledge for
the large-scale extraction of RDF from natural language, therewith making this
knowledge e�ortlessly integrable into the Data Web. ReadTheWeb and PROS-
PERA rely on a their own ontology for this purpose. Thus, their results cannot
be linked directly into the Data Web. [13] does not generate RDF. In addition,
our experiments show that our approach can extract a large number of state-
ments (like PROSPERA and [13]) with a high precision (like ReadTheWeb).
For example, 98% of the 2657 statements extracted by BOA on organizations in
one iteration were not available in the underlying data source. We minimize the
e�ect of semantic drift by adopting a conservative approach with respect to the
patterns that are used to generate RDF from text.

2 http://www.alchemyapi.com
3 http://www.opencalais.org
4 http://extractiv.com
5 http://fox.aksw.org
6 http://rtw.ml.cmu.edu
7 http://lemurproject.org/clueweb09



3 Approach

In this section we present the BOA framework for extracting natural language
representations of relations found on the Data Web. Our work�ow is imple-
mented as outlined in Figure 1. We �rst gather data from the internet by using
the corpus extraction module. Alternatively, existing cleaned corpora can be
loaded into BOA's corpus repository. Given a set of predicates whose represen-
tations are to be learned, the instance knowledge available on the Data Web is
harvested. Then, for each predicate, our pattern extraction module searches for
prototypical natural language patterns that are speci�c for this predicate. The
patterns are subsequently �ltered, scored and �nally used for extracting RDF
statements out of natural language text. These statements can then be written
back into the input knowledge base and the process can be started anew. In the
following, we present each of the modules of BOA in more detail. In addition, we
exemplify their use and their output by using the example of learning patterns
from Wikipedia by using DBpedia.
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Fig. 1. Overview of the BOA approach.

3.1 Corpus Extraction

The corpus extraction component of BOA consists of three main modules: A
crawler, a cleaner and an indexer. The role of the crawler module is to retrieve
raw text data from the document-oriented Web. The seed pages for this process
are determined by querying the Web with the labels of instances that are linked
by the predicates whose natural language representations are to be learned. Once
presented with a set of seed pages, our crawler can be con�gured to follow the
links in the seed pages up to a certain depth and until a given corpus size is
reached. Note that the crawler gets rid of the markup contained in the webpage



text. In addition, it allows to integrate corpus-speci�c preprocessing components
so as to enable it to extract raw text. For example, when extracting a corpus
from a Wikipedia dump, we used the tool presented in [18] to transform the
Wikipedia data from XML to UTF-8 encoded text. The raw text extracted from
all pages is merged to a corpus that is sent to the cleaner module.

The cleaner module implements the functionality that is necessary to remove
noise from the text retrieved by the crawler. It begins by splitting its input into
sentences by using the Sentence Boundary Disambiguation provided by the stan-
ford NLP core toolkit8. Subsequently, all sentences go through a data cleaning
process with 24 UTF-8 compatible �lters, introduced in [2]. For example, sen-
tences with two many spaces in relation to length, with uncommon symbols like
| [ ] � � and sentences with more than eight capital words in a row are discarded.
The cleaned corpus is �nally sent to the indexer module.

The indexer module allows for the time-e�cient search of instance labels
and of patterns in our corpus. In BOA, this functionality is implemented by
the Lucene indexer9, which we con�gured by using the defaults provided by the
engine. The corpus extraction process for Wikipedia led to a corpus of 7.6GB
that consisted of 44.7 million sentences.

3.2 Knowledge Acquisition

Due to the mere size of the Data Web, extracting natural language representa-
tions for all relations found on it would require substantial hardware resources.
While our approach is generic enough to be deployed on any knowledge base and
on any predicate found on the Data Web, its current implementation demands
the input of

� a class C that serves as the rdfs:domain or as the rdfs:range of the pred-
icates whose representations are to be learned and of

� a knowledge base that serves as background knowledge.

Once C is given, we retrieve all statements that have entities of rdf:type C
as their subject or objects. By these means, we retrieve all predicates that link
such entities to other and ensure that we only retrieve predicates that have
been instantiated in the knowledge base of interest. This set of instances is the
background knowledge upon which we deploy our pattern extraction approach.
Using our knowledge acquisition framework on DBpedia with the classes :Place,
:Person resp. :Organisation led to the acquisition of 157, 176 resp. 154 di�er-
ent predicates which were used in 1 to 211306, 260451 resp. 21241 triples, with
an average of 2549, 4036 resp. 1313 triples per predicate.

3.3 Pattern Search

The pattern search is carried out independently for each predicate. Let p ∈ P be
a predicate whose natural language representations are to be detected, where P

8 http://nlp.stanford.edu/software/tokenizer.shtml
9 http://lucene.apache.org/java/docs/index.html



is the set of all predicates. In addition, Let K be the knowledge base that is used
as background knowledge. We use the symbol �∈� between triples and knowledge
bases to signify that a triple can be found in a knowledge base. The starting point
for the pattern search for p is the set of pairs I(p) = {(s, o) : (s p o) ∈ K} that
instantiate p. In the following, we use λ(x) to signify the label of any resource
x and µ(x) to signify x's URI. The pattern search process begins with the even
distribution of the set I(p) across pattern search threads. Each of these threads
then retrieves all sentences which contain the pairs of labels (λ(s), λ(o)) assigned
to it from the input corpus. An example of such sentences for the DBpedia
relation :subsidiary is shown in Listing 1. If a thread �nds a sentence σ that
contains both λ(s) and λ(o), it deletes all tokens that are not found between λ(s)
and λ(o) in σ. The labels are then replaced with the placeholders ?D? for λ(s)
and ?R? for λ(o). We call the resulting string a natural language representation

of p and denote it with θ. Each θ extracted is used to create a new instance of
a BOA pattern.

De�nition 1 (BOA Pattern). A BOA pattern is a pair P = (µ(p), θ), where
µ(p) is p's URI and θ is a natural language representation of p.

De�nition 2 (BOA Pattern Mapping). A BOA pattern mapping is a func-

tion M such that M(p) = S , where S is the set of natural language represen-

tations for p.

1 http :// dbpedia.org/resource/Google
2 http :// dbpedia.org/ontology/subsidiary
3 http :// dbpedia.org/resource/YouTube .
4 http :// dbpedia.org/resource/Google rdfs:label ``Google ''@en .
5 http :// dbpedia.org/resource/YouTube rdfs:label ``Youtube ''@en .

Listing 1. RDF snippet used for pattern search

For example, consider the RDF snippet from Listing 1 derived from DBpedia.
Querying the index of the Wikipedia corpus for sentences which contain both
entity labels returns the sentences depicted in Table 1 amongst others. We can
replace �Google� with ?D?, because it is the subject of the :subsidiary triple,
as well as replace �Youtube� with ?R? because it is the object of the same triple.
These substitutions lead to the BOA patterns (:subsidiary, �?D?'s acquisition
of ?R?�) and (:subsidiary, �?R?, a division of ?D?�). For the sake of brevity
and in the case of unambiguity, we also call θ �pattern�.

Sentence with λ(s) before λ(o) Sentence with λ(o) before λ(s)
�Google's acquisition of Youtube

comes as online video is really starting
to hit its stride.�

�Youtube, a division of Google, is
exploring a new way to get more high-
quality clips on its site: �nancing ama-
teur video creators.�

Table 1. Example sentences for pattern search.



The search for BOA patterns is completed with a large number of duplicates
and requires some post-processing. In addition to the storage of the patterns
M(p) for each p, the post-processing includes the computation of the number
f(P, s, o) of occurrences of P for each element (s, o) of I(p) and the ID of the
sentences in which P was found. Based on this data, we can also compute

� the total number of occurrences of a BOA pattern P, dubbed f(P);
� the number of sentences that led to θ and that contained λ(s) and λ(o) with

(s, o) ∈ I(p), which we denote l(s, o, θ, p) and
� I(p, θ) is the subset of I(p) which contains only pairs (s, o) that led to θ.

We denote the set of predicates such that the pattern θ ∈M(p) by M(θ). Note
that pattern mappings for di�erent predicates can contain the same pattern.

3.4 Pattern Scoring

The pattern scoring process is carried out in parallel and consists of two steps:
selection and score computation. The aim of the selection step is to retrieve pat-
terns that abide by a set of conditions that make them �t for RDF extraction.
We begin by dismissing patterns which are too long or short (we only consider
patterns between three and ten tokens) and patterns which only consist of stop
words (we used a list of 41 stop words including �(�, �,� etc.). In addition we dis-
card all patterns starting with �and� or �, and� since they denote the conjunction
of sentences, which leads to ambiguous references when no co-reference analysis
or phrase structure analysis is applied. This can be easily seen in the following
example: �Davies ` son John played �rst-class cricket for Tasmania and was

thrice Mayor of Hobart .� This sentence would lead to �?D? and was thrice

Mayor of ?R? � being a pattern for the :capital predicate, which is clearly
wrong. Note that we did not apply any co-reference or phrase structure anal-
ysis techniques for performance reasons. The last �lter we applied removes all
patterns which appear less than three times between labels of the same pair of
entities. Note that the statistics used for the pattern scoring step encompass all
patterns. The scores are yet only computed for those patterns that abide by the
restrictions speci�ed above.

The second part is the actual score calculation. The score function integrated
in BOA relies on the following set of observations:

1. A good pattern θ for p is used across several elements of I(p). This charac-
teristic is modeled by computing the support of the pattern.

2. A good pattern θ for p allows to map ?D? (resp. ?R?) to entities whose
rdf:type is the rdfs:domain (resp. rdfs:range) of p. We call this charac-
teristic typicity.

3. A good pattern θ is used exclusively to express p, i.e, it occurs in a small
number of pattern mappings. We call this last characteristic speci�city.

We �rst express these three characteristics of a good pattern formally. Subse-
quently, we derive our formula for the score of a pattern.



Support We calculate the support s(θ, p) of the pattern θ for the predicate p

as follows:

s(θ, p) = log

(
max

(s,o)∈I(p)
l(s, o, θ, p)

)
log(|I(p, θ)|). (1)

Since both components of the support are Poisson-distributed (see Figure 2),
we use the logarithm to reduce the boosting of very popular patterns.

Typicity A pattern θ is considered to display a high typicity with respect to
a predicate p if it connects only entity labels with match the range and domain
restrictions of p. Let d resp. r be functions that map each p to the highest super-
class (except owl:Thing) of its rdfs:domain resp. rdfs:range in the provided
ontology. Furthermore, let δ(θ, σ) resp. ρ(θ, σ) be functions which map the class
of the named entity used to substitute ?D? resp. ?R? in the pattern θ for the
given sentence σ. Finally, let the function ζ(x, y) be a function that returns 1 if
x = y and else 0. We de�ne the typicity of θ as

t(θ, p) =
∑
σ∈S

(
ζ(d(p), δ(θ, σ)) + ζ(r(p), ρ(θ, σ))

2|S|

)
· log(|S|+ 1), (2)

where S is the set of sentences used to evaluate the typicity of θ. Note that the
�rst term of the typicity is simply the precision of the pattern. We multiply this
factor with the logarithm of (|S|+1) to prevent overly promoting patterns which
have a low recall, i.e., patterns that return only a small number of sentences.
Also note, that the detection of δ(θ, σ) resp. ρ(θ, σ) is a demanding task, which
we solved so far by using a trained NER tagger.

Speci�city A pattern θ is considered to be speci�c when it occurs in a small
number of pattern mappings, i.e, when it expresses exclusively p. We adapted the
idea of inverse document frequency (idf) as known from Information Retrieval to
capture this characteristic. The speci�city i(θ) of θ is thus given by the following
expression:

i(θ) = log

(
|P|
|M(θ)|

)
, (3)

where P is the set of all predicates. All three equations can now be combined to
the global score c(θ, p) used by BOA as shown in Equation 4:

c(θ, p) = s(θ, p)t(θ, p)i(θ). (4)

We de�ne the normed score cn(θ, p) as the score divided by the local maximum
over all patterns belonging to the same pattern mapping to normalize the scores
to the interval [0, 1]:

cn(θ, p) =
c(θ)

max
θ′∈M(p)

c(θ′)
. (5)



(a) Distribution of max
(s,o)∈I(p)

l(s, o, θ, p) (b) Distribution of |I(p, θ)|

Fig. 2. Distribution of parameters used to compute the support of patterns in log-log
scale. The y-axis shows the number of patterns

3.5 RDF Generation

The RDF generation is a very delicate process as each iteration generates the
input for the subsequent RDF generation. In previous work, semantic drift has
been shown to be one of the key problems of this process [4, 14]. In order to
maintain a high precision and to avoid semantic drift within the BOA framework,
we solely select the top-n patterns θ for each predicate p according to cn(θ, p)
for generating RDF. In addition, we �lter out those patterns θ which display a
normed score below a given threshold as well as a f((µ(p), θ)) below a second
threshold. As our evaluation shows, this approach is su�cient to avoid selecting
noisy patterns. All patterns which abide by these two conditions are used to
retrieve sentences that can be used for RDF generation.

The RDF generation per se is carried out as follows: For each pattern θ
and each predicate p, we �rst use the Lucene index to retrieve sentences that
contain θ stripped from the placeholders �?D?� and �?R?�. These sentences are
subsequently processed by a NER tool that is able to detect entities that are of
the rdfs:domain and rdfs:range of p. Thereafter, the �rst named entities on
the left and right of θ which abide by the domain and range restrictions of p

are selected as labels for subject and object of p. Each of the extracted labels
is then fed into an URI retrieval service that aims to retrieve the entity e in K
whose label is most similar to the label extracted by BOA. If such an e is found,
then we use λ(e) in K as URI for the label detected by BOA. Else, we create a
new BOA URI.

Once we have computed URIs, we are �nally able to generate RDF triples.
The labels retrieved by our URI retrieval approach are attached to the URI by
using rdfs:label. In addition, note that we are even able to add rdf:type

statements to our knowledge base by utilizing the domain and range restrictions
of p. An excerpt of novel statements (with respect to DBpedia) extracted auto-
matically by BOA using Wikipedia and DBpedia can be found in Listing 2. The
results of our extraction can be explored via the dashboard shown in Figure 3.



1 http :// dbpedia.org/resource/Abdullah_Ahmad_Badawi
2 rdfs:label ``Abdullah Ahmad Badawi ''@en ;
3 rdf:type http :// dbpedia.org/ontology/Person .
4

5 http :// dbpedia.org/resource/Malaysia
6 rdfs:label ``Malaysia ''@en ;
7 rdf:type http :// dbpedia.org/ontology/PopulatedPlace ;
8 http :// dbpedia.org/ontology/leaderName http :// dbpedia.org/

resource/Abdullah_Ahmad_Badawi .

Listing 2. RDF snippet generated by BOA

Fig. 3. Screenshot of the BOA frontend

4 Evaluation

Our evaluation was driven by two main questions:

� Q1: Can we use knowledge found on the Data Web to bootstrap the Data

Web, i.e., can we �nd knowledge not yet available on the Data Web?

� Q2: Can we retrieve this knowledge with a high precision, i.e, does the score

calculation retrieve the right patterns for each predicate?

To answer these questions, we evaluated our approach on two di�erent data
sets and used DBpedia as source for background knowledge. Note that we only
considered the classes Person, Location and Organisation as seed classes for
the extraction due to the restrictions of the NER framework we utilized.

4.1 Experimental Setup

Corpora We used two corpora, which di�er in topic, size and writing style.
The �rst corpus, dubbed en-news, was described in [2]. It was crawled from



news sites in English that were published between the years 2005 and 2010. The
corpus contains between 32 million to 50 million unique and cleaned sentences for
each year (256.1 million sentences overall). The second corpus, dubbed en-wiki,
was derived from the English Wikipedia dump of March 2011 without history or
discussions entries. The dump was transformed by the tool presented in [18] from
XML to UTF-8-encoded text. In contradistinction to en-news we did not remove
duplicate sentences from en-wiki as it did not contain as many duplicates as en-
news. Overall, the en-wiki corpus contains 44.7 million sentences. An overview
of the corpora can be found in Table 2.

Background Knowledge We used DBpedia as source for background knowl-
edge. Listing 3 shows an example of the queries used to retrieve properties and
instances that are relevant for the classes Organisation, Place and Person

from DBpedia (see Figure 4). Overall, the knowledge acquisition process led to
283 di�erent relations ranging from 1 to 471920 triples, with an average of 4639
triples per relation. Note that the evaluation was carried out independently for
each of the 6 possible combinations of seed classes and corpora.

Parameters We limited the number of sentences returned by Lucene for the
pattern search to 25000. We also excluded all patterns P = (µ(p), θ) with f(P) <
20. We used up to 500 sentences to calculate the typicity of the patterns (see
Equation 2). For the selection of sentences for the RDF generation, we only used
the top-1 and top-2 patterns for each predicate. The evaluation of the accuracy
of each pattern was carried out manually by two evaluators on 100 statements
that were selected randomly. The inter-annotator agreement was computed by
using Cohen's Kappa. Since the precision of the entity extraction algorithm is
out of scope of this paper, we considered a triple as correct if the sentence it was
generated from contained the right labels for named entities that matched the
rdf:type of the domain and range of p. Furthermore, sentences which contained
references to correct entities (e.g., pronouns) but not the entity labels themselves
were considered to be false positives.

1 PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>
2 PREFIX rdfs: <http ://www.w3.org /2000/01/rdf -schema#>
3 PREFIX dbpo: <http :// dbpedia.org/ontology/>
4 SELECT ?s ?sLabel ?prop ?o ?oLabel ?domain ?range
5 WHERE {
6 ?s rdf:type dbpo:[ Organisation|Person|Place] .
7 ?s rdfs:label ?sLabel .
8 ?o rdfs:label ?oLabel .
9 [?o ?prop ?s|?s ?prop ?o] .

10 FILTER (lang(? sLabel) = en && lang(? oLabel) = en) .
11 ?prop rdfs:range ?range .
12 ?prop rdfs:domain ?domain .
13 }

Listing 3. SPARQL query template used for knowledge acquisition
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Fig. 4. Overview of the knowledge extraction on DBpedia

wiki news

Language English English

Topic General knowledge Newspaper articles

Number of lines 44.7 256.1

Number of words 1,032.1 5,068.7

Number of characters 5,689 30,289.7

Number of unique words 5.9 26.3

Table 2. Corpora statistics. (All �gures in millions.)

4.2 Results and Discussion

The results of our evaluation are shown in Table 3. We reached an average inter-
annotator agreement of 0.9175. Our approach performed consistently best on
predicates related to organizations and worst on those related to locations. When
using the en-wiki as corpus, our worst precision was 90.5% on locations when
using the top pattern. This value improved to 93% when using the top-2 patterns.
Our overall best precision of 99% clearly answers question Q2 positively. Our
good performance on en-wiki is due to the encyclopedic character of this dataset.
Overall, en-wiki contained a (in relation to its size) relatively larger number of
sentences that expressed the relations found in DBpedia. Consequently, we could
rely on a relatively larger number of good exemplary sentences and compute more
accurate scores.

The en-news corpus was less reliable in this respect. It contained less in-
formation (and consequently more noise) than en-wiki and thus led to worse
statistics and patterns. This characteristic of the data set was especially notice-
able for predicates of the Location class, as locations are very generic and can
thus occur in a large number of contexts that do not express the predicate p used
as input. Consequently, we solely reached precisions between 57% and 61.5% for
Location on the en-news corpus. On the class Organisation, we still reached
precisions of up to 93%.



Top 1 Patterns Top 2 Patterns
en-wiki en-news en-wiki en-news

LOC PER ORG LOC PER ORG LOC PER ORG LOC PER ORG

Rater 1 88% 97% 99% 61% 73% 91% 94% 96% 96% 57% 67% 92%
Rater 2 93% 97% 99% 62% 74% 91% 92% 96% 95% 57% 68% 94%

Intersection 84% 96% 99% 59% 73% 91% 94% 96% 95% 57% 67% 92%

Average 90.5% 97% 99% 61.5% 73.5% 91% 93% 96% 95.5% 57% 67.5% 93%

κ 0.68 0.66 1 0.94 0.97 1 0.9 1 0.88 1 0.98 1
Table 3. Evaluation results for top-1 and top-2 patterns.

Note that the patterns extracted from en-wiki are by no means bound to
en-wiki for the extraction of triples. Thus, we can apply the patterns retrieved
using en-wiki on any corpus. Consequently, the precision scores achieved on
en-wiki re�ect best the overall capabilities of our extraction approach. For ex-
ample, when applying the top en-wiki pattern for predicates from each of the
three classes Person, Location and Organisation with the Google index and
only considering the top-20 pages returned, we achieved a precision of 95% of
the :spouse, 95% of the :capital and 100% on the :subsidiary predicates.
Examples of natural language representations extracted by BOA are shown in
Table 5.

We measured how much new correct knowledge we were able to generate by
counting the number of statements that we generate that could not be found in
DBpedia and multiplying it with the precision of our approach. Table 4 shows
that we extracted more that 13,000 new correct facts in one iteration, therewith
answering also Q1 with a clear �yes�. Examples of these new facts are shown in
Table 6. As our evaluation shows, our approach is particularly well suited for
extracting knowledge on organizations. For example, 98% of the facts consid-
ered in our evaluation and extracted by using news data could not be found
in DBpedia. When using Wikipedia as text data, 99% of the statements that
were evaluated on the organization data were not available in DBpedia. When
assuming an even distribution of correct facts and of their inclusion in DBpedia,
this implies that 2494 of the 2567 statements on organizations extracted from
Wikipedia by using DBpedia are not to be found in DBpedia. Note that one
iteration on all predicates linked to organizations on the en-news corpus lasts
about 15 minutes, therewith showing that our approach is fully suitable for the
large-scale extraction of new knowledge from the Web.

A direct comparison of our approach with those presented in [4, 14, 13] cannot
be carried out due to the fact that we operate on di�erent background knowledge
and on di�erent text corpora. Nevertheless, our evaluation on en-wiki shows
that although we do not use a reasoner, we extract patterns with a precision
equal or superior to those extracted by PROSPERA [14] with a reasoner. The
precision achieved by PROSPERA without a reasoner lies signi�cantly below
that of BOA. The same holds for the approach presented in [13]. In addition, we
extract signi�cantly more correct statements in our �rst iteration than any of



en-wiki en-news
LOC PER ORG LOC PER ORG

Triples extracted/in DBpedia 1465/138 8817/183 2567/48 488/52 903/44 916/7

Evaluated triples/in DBpedia 100/8 100/1 100/1 100/1 100/7 100/0

Precision (average) 90.5% 97% 99% 61.5% 73.5% 91%

New true statements 1200 8375 2494 268 631 827

Pattern mappings/patterns 62/1045 72/612 59/241 49/3832 70/7294 55/1077
Table 4. Overview of extraction statistics of �rst iteration

the previous approaches even when using a corpus that is more than 650 times
smaller than ClueWeb09, therewith hinting towards a higher recall.

Relation Top 2 Pattern

URI
Domain/Range

en-wiki en-news

birthPlace
Person/PopulatedPlace

1. D was born in R
2. � (D , the mayor of R)

1. D has been named in the R
2. D, MP for R

foundationPerson
Organisation/Person

1. R , co-founder of D
2. R , founder of D

1. R, the co-founder of D
2. R, founder of the D

subsidiary
Organisation/Organisation

1. R , a subsidiary of D
2. � (R , a division of D)

1. R, a division of D
2. D `s acquisition of R

riverMouth
River/BodyOfWater

1. D , which �ows to R
2. D , a tributary of the R

1. � (D empties into the R)
2. � (D, which joins the R)

leaderName
PopulatedPlace/Person

1. D `s Prime Minister R
2. R , the Prime Minister of D

1. D `s Prime Minister R
2. D for talks with President R

capital
PopulatedPlace/City

1. R , the capital of D
2. R , capital of D

1. R, the capital of D
2. R, capital of D

Table 5. Top-2 natural language representations for six most used relations in eval-
uation. ��� means that no natural language representation was found, patterns in
brackets are next in line but were not used for the evaluation because they did not
ful�ll the threshold requirements.

5 Conclusion and Future Work

In this paper, we presented BOA, an approach for bootstrapping the Data Web.
Our approach is based on using instance data for predicates found on the Data
Web and retrieving natural language representations for these predicates. Based
on these representations, we can extract sentences from natural language text
that contain both named entities and patterns. These sentences can then be
used to extract (in particular novel) knowledge from the document-oriented Web
and integrating this knowledge into the Data Web. Our evaluation shows that
when combining knowledge from DBpedia with text from Wikipedia, we achieve
precision scores beyond 90% and can retrieve more than 12,000 facts that (13,000



with en-news) were not previously found in DBpedia within one iteration. In
future work, we will aim to deploy our approach on large data sets such as
ClueWeb09 to discover even more facts. Note that our approach can thus be
used on most languages whose grammar adheres roughly to the SPO idea. The
potential of the approach presented herein is immense, as it could promote the
Data Web to the lingua franca for a large number of applications including
machine translation, named entity recognition and speech generation.

wiki-loc

Westlake High School tenant Chaparral Stadium
Boston College tenant Higgins Hall
Konzerthaus Berlin architect Karl Friedrich Schinkel
Villa Foscari architect Andrea Palladio

wiki-per

Elvin Jones birthPlace Pontiac , Michigan
Ernest Reyer birthPlace Marseilles
Henri Curiel deathPlace Paris
Carrero Blanco deathPlace Madrid

wiki-org

Time Warner subsidiary DC Comics
Interscope Records subsidiary Star Trak Entertainment
Heavy Brigade notableCommander James Yorke Scarlett
Federal Department of the West notableCommander John C. Fremont

news-loc

Badakhshan capital Faizabad
Quetta capital Baluchistan
Bulgaria leaderName Boyko Borisov
Japan leaderName Taro Aso

news-per

Leyla Rodriguez Stahl spouse Abel Pacheco
Sehba Musharraf spouse Pervez Musharraf
Kelly Osbourne father Ozzy Osbourne
Svetlana Alliluyeva father Josef Stalin

news-org

College of Cardinals dean Cardinal Joseph Ratzinger
Yale University School of Architecture dean Robert A.M. Stern
Aldi foundationPerson Theo Albrecht
World Wrestling Entertainment foundationPerson Vince McMahon

Table 6. Triples extracted from evaluation data set not present in DBpedia.
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