
Semantic Web-driven Development of Services-oriented

Systems – Exploiting Linked Data for Services

Annotation and Discovery

Stefan Dietze1, Dong Liu2, Hong Qing Yu2, Carlos Pedrinaci2
1 L3S Research Center, Hanover, Germany

dietze@l3s.de

2 Knowledge Media Institute, The Open University, Milton Keynes, MK76AA, UK

{d.liu, h.q.yu, c.pedrinaci}@open.ac.uk

Abstract. Within a service-oriented architecture (SOA), software components

are accessible via well-defined interfaces. To this end, the discovery and

integration of Web services and APIs is becoming an increasingly important

task in present-day software engineering. Despite considerable research

dedicated to Semantic Web Services (SWS), structured semantics are still not

used significantly to facilitate services and API discovery. This is due to the

complexity of comprehensive SWS models and has led to the emergence of a

new approach dubbed Linked Service which adopt Linked Data principles to

produce simplified, RDF-based service descriptions that are easier to create and

interpret. However, current Linked Services tools assume the existence of

services documentation (HTML, WSDL) and do not sufficiently support non-

functional properties (NfP). Therefore, we introduce SmartLink, a Web-based

editor and search environment which allows both humans as well as machines

to produce light-weight service descriptions from scratch by addressing both,

functional and non-functional service properties.

Keywords: Software Engineering, Semantic Web, Linked Data, SmartLink.

1 Introduction

An essential part of Software Engineering nowadays is concerned with the discovery

of reusable software components which satisfy one or more requirements of the

overall system to be implemented. The past decade has seen the emergence and large-

scale success of another fundamental paradigm: service-orientation. Within a service-

oriented architecture (SOA), components are accessible via well-defined interfaces

and usually exchange messages via remote-procedure calls (RPC), HTTP or SOAP.

Particularly the emergence of REST-ful services has led to the widespread availability

of public and reusable Web APIs, such as the wide range of APIs offered by Google1.

To this end, the discovery and integration of Web services and APIs is becoming an

increasingly important task in present-day software engineering.

1 https://code.google.com/

Research efforts in the area of Semantic Web Services (SWS) were mainly aiming

at the automation of Web service-related tasks such as discovery, orchestration or

mediation. Several conceptual models, such as OWL-S [6], WSMO [3], and standards

like SAWSDL [7] have been proposed, usually covering aspects such as service

capabilities and interfaces. However, SWS research has for the most part targeted

WSDL or SOAP-based Web services, which are not prevalent on the Web. Also, due

to the inherent complexity required to fully capture computational functionality,

creating SWS descriptions has represented an important knowledge acquisition

bottleneck and required the use of rich knowledge representation languages and

complex reasoners. Hence, so far there has been little take up of SWS technology

within non-academic environments. That is particularly concerning since Web

services – nowadays including a range of often more light-weight technologies

beyond the WSDL/SOAP approach, such as RESTful services or XML-feeds – are in

widespread use throughout the Web. That has led to the emergence of more simplified

SWS approaches such as WSMO-Lite [9] SA-REST [7] and Micro-WSMO/hRESTs

[4] which benefit from simpler models expressed in RDF(S).

While the Semantic Web has successfully redefined itself as a Web of Linked

(Open) Data (LOD) [1], the emerging Linked Services approach [7] exploits the

established LOD principles for service description and publication. By supporting

annotation of a variety of services, such as WSDL services as well as REST APIs, the

Linked Services registry and discovery engine iServe2 enables publishing of service

annotations as linked data expressed in terms of a simple conceptual model: Minimal

Service Model (MSM), a simple RDF(S) ontology able to capture (part of) the

semantics of both Web services and Web APIs.

However, while Linked Services appears to be a promising stream of research, we

observe two major issues which hinder a large-scale take-up of the Linked Services

approach:

(i1) Lack of consideration of non-functional service properties and less formal

metadata

(i2) Lack of appropriate editors and annotation environments

With respect to (i1), previous efforts have largely focused on formalizing the actual

functionalities of a service (capabilities, interfaces). However, in order to allow

assessment about suitability of individual services or APIs for a particular service

consumer, non-functional properties (NfP) are of crucial importance. These include,

for instance, basic metadata about the development status or the licensing model as

well as information about the quality of service (QoS). In addition, less formal

services annotations turned out to be very useful since one of the yet most established

mode of using Linked Services aims at rather semi-automated service discovery

where developers browse or navigate through Linked Services libraries based on

filtering mechanisms, as opposed to fully automated services discovery and

orchestration. While the latter is fundamentally dependent on complex and formal

specifications of services capabilities and interfaces (i.e. functional properties) the

former can be supported based on rather light-weight and often non-functional service

2 http://iserve.kmi.open.ac.uk

metadata, such as classifications, tags or development status information. However

these are not sufficiently supported within current schemas such as MSM and

WSMO-Lite.

With regard to (i2), editors had been developed which support developers in

creating semantic annotations for services: SWEET [5] (SemanticWeb sErvices

Editing Tool) and SOWER (SWEET is nOt a Wsdl EditoR). However, SWEET and

SOWER build on the assumption that either HTML documentation of services/APIs

(SWEET) or WSDL files (SOWER) are available as starting point for annotation.

While that holds for a certain set of services, a growing number of services on the

Web neither provide a WSDL nor an HTML documentation and hence, current

Linked Services editors cannot be deployed in a range of cases. In this regard, we

particularly would like to promote an approach where services documentation relies

exclusively on structured RDF(S) while additional human-readable documentation is

not provided manually but automatically generated to avoid redundancies.

Therefore, we introduce SmartLink3 ("SeMantic Annotation enviRonmenT for

Linked services"), which addresses (i1) and (i2) by contributing:

(a) an RDF schema and data store for service NfP

(b) an integrated editing and browsing environment for Linked Services on the

Web (taking into account both functional and non-functional data)

In the following Section we provide some background information on Linked

Services, while Section 3 introduces the SmartLink NfP schema. Section 4 describes

overall architecture of SmartLink. We finally discuss our results in Section 6.

2 Non-functional properties for Linked Services

Previous work dealing with the exploitation of SWS and Linked Services

technologies in NoTube4 and mEducator5, as described in [2][10], has shown that one

of the most established and accepted use cases for Linked Services annotations aims

at browsing and searching services in a meaningful way as opposed to automated

services discovery and execution. To this end, Linked Services seem of particular use

when aiding developers in finding APIs for a given software engineering task.

In this regard, formal specifications turned out to be less important while light-

weight service annotation with tags/keywords and classifications plaid a vital role.

Particularly when supporting collaborative annotation of entities – services like any

documents, content or data – by a multiplicity of service consumers and developers,

formal correctness of the generated data can hardly be enforced and means are

required to provide descriptions in a more loose and flexible way. For instance, in

many cases, Linked Data resources can be roughly associated with a service – for

instance, by tagging it with a service category or keyword which might not provide

formal enough semantics to facilitate automation of discovery-based execution, but

might still be useful to facilitate users in finding appropriate services. For instance, an

3 http://smartlink.open.ac.uk & http://kmi.open.ac.uk/technologies/name/smartlink
4 http://notube.tv
5 http://www.meducator.net

API exposing metadata of resources could be associated with a keyword “metadata”

or a reference to http://dbpedia.org/resource/Metadata. However, the current scope of

SWS and Linked Services does not provide appropriate facilities to represent such

rather lose relationships in an appropriate way but focuses on formal representations

of service elements, such as message parts or operations. In that respect, a need for

less formal services annotations was observed, to facilitate developers and service

consumers to collaboratively annotate services based on Linked Data principles

without constraining them by insisting on complete coherence of the provided

annotations. Instead of enforcing non-contradictory data, collaborative annotation

schemas need to embrace diversity even if that reduces the opportunities for

reasoning-based automation.

On a similar note, current service description schemas (e.g., MSM, OWL-S,

WSMO-Lite) seem to be fundamentally focused on functional properties while not

providing sufficient support for NfPs, which would, for instance, allow users to

specify licensing schemes, quality of service information or development status

descriptions. While some schemas already allow the association of additional service

information with particular service instances, the use of dedicated Linked Data

vocabularies to further specify NfPs is still underdeveloped.

SmartLink NfP schema

To this end, we have developed a dedicated schema that addresses the aforementioned

issues by (a) focusing in particular on NfPs and (b) facilitating collaborative, naturally

diverse and less formally coherent annotation. To ensure the widespread applicability

and reusability of the NfP schema, we reuse existing ontologies and vocabularies

rather than constructing new ontologies from scratch. As shown in Fig. 1, the schema

captures four main aspects of the non-functional properties of Web services, i.e.

social, technical, licensing and QoS. Social attributes include human factors such as

developer, contact person, organisation, project. The FOAF6 vocabulary is adopted to

describe those personal and social factors. Furthermore, tags attached to Web services

are also regarded as an important social attribute, which helps in service classification

and organization. Thus, the CommonTag7 vocabulary is adopted to support the

tagging by ensuring interoperability of provided service tags. The technical NfPs refer

to information about how to interact with the services and cover, for instance, the

communication protocol (e.g. HTTP and SOAP), data (exchange) format (e.g. XML,

RDF and JSON), status (e.g. testing, final, work-in-progress), authentication model

(e.g. HTTP Basic, API Key, OAuth). It is worth noting that technical NfPs do not

describe the behaviours of services, but clarify the prerequisites for consumers to

invoke those Web services.

The licensing properties indicate the terms and conditions with respect to the

usage of individual Web services. As shown in Fig. 1, we currently define four

concepts for the licensing properties, i.e. service license, data license, usage limits and

fees. A service license authorizes and constrains invocation of the service, whereas a

data license is for the reuse or repurpose of data generated or provided by the service.

Usage limits cover the amount of times of service invocation within a certain time

period, or the minimum interval between two times of invocation. Obviously, fees are

6 http://www.foaf-project.org/
7 http://commontag.org/

applicable to non-free services only and refer to the price a consumer needs to pay for

consuming a service.
Social

foaf:Person

foaf:Organisation

foaf:Project

ctag:Tag

nfp:hasProject

nfp:hasTag

nfp:hasOrganisation

nfp:hasContactPerson
nfp:hasDeveloper

Technical
nfp:Protocol

nfp:DataFormat

nfp:Status

nfp:hasProtocol

Licensing QoS

msm:Service

nfp:dataFormat

nfp:Fee

nfp:Usage
Limit

nfp:Data
License nfp:Service

License

nfp:Response
Time

nfp:Availability

nfp:Throughput

nfp:Authenti-
cationModel

nfp:hasFees

nfp:hasLimit

nfp:hasLicense

nfp:hasStatus

nfp:authenticatedBy

nfp:hasQoSParameter

nfp:Reliabilty

Fig. 1. A partial view of the SmartLink NfP Schema.

The licensing properties indicate the terms and conditions with respect to the usage of

individual Web services. As shown in Fig. 1, we currently define four concepts for the

licensing properties, i.e. service license, data license, usage limits and fees. A service

license authorizes and constrains invocation of the service, whereas a data license is

for the reuse or repurpose of data generated or provided by the service. Usage limits

cover the amount of times of service invocation within a certain time period, or the

minimum interval between two times of invocation. Obviously, fees are applicable to

non-free services only and refer to the price a consumer needs to pay for consuming a

service.

With respect to the quality of Web services, we adopt the model from [12], where

the QoS parameters are divided into two classes: objective parameters and subjective

parameters. The former are quantitative measures like availability, reliability,

throughput and response time, whereas the latter are qualitative measures like user

ratings. Here, we only focus on the objective QoS parameters, because theses have

been published on the Web8,9.

Schema mapping and alignment
We reuse existing vocabularies to represent the NfPs of Web services. It allows

interoperability between individual service description repositories and facilitates the

import of publicly available service NfP metadata into SmartLink. Here, we take

ProgrammableWeb10 as an example to demonstrate schema mapping and alignment.

Parts of the mappings between our schema and the one of ProgrammableWeb are

shown in the table below. In addition, API Status
8 provides the statistics of the

availability and response time of public APIs. Similarly, Mashery
9
 monitors on the

availability and response time of a set of services. The metadata these repositories

exploit can be completely mapped to SmartLink schema. Moreover, the data can also

be imported to SmartLink.

8 http://api-status.com/
9 http://developer.mashery.com/status
10 http://www.programmableweb.com/

Table. 1. NfP schema mapping between SmartLink and ProgrammableWeb.

SmartLink NfP Schema ProgrammableWeb's Schema

ServiceLicense Commercial Licensing

ServiceLicense Non-Commercial Licensing

Fee Usage Fees

Usage Limit Usage Limits

Authentication Model Authentication Model

foaf:Organization Provider

foaf:Company Company

foaf:weblog API Blog

3 SmartLink: a Linked Services editor and browser

In order to provide a Linked Services editor which allows (a) the annotation of REST-

ful services without any pre-existing documentation and (b) annotation of services

according to multiple schemas, in particular SmartLink NfP, we have developed the

SmartLink editor. SmartLink provides editing and browsing facilities to interact with

multiple RDF stores and data sets. It allows annotation of services from scratch, that

is, without any pre-existing services documentation such as WSDL or HTML files, as

assumed by existing annotation tools (Section 1).

NfP

Repository
rd fs:isD e fined By

SmartLink Editor

GUI

SmartLink Core

Service
Manager

User
Manager

Service
Invoker

SmartLink Service

REST API

SmartLink LInked Data Provider

Linked Data

Content
Negotiator

HTML

RDF
Serializer

Page
Generator

SPARQL

Fig. 2. SmartLink – overall architecture.

As shown in Fig. 2, SmartLink operates on top of Linked Data stores that exploit the

MSM and the SmartLink NfP schemas and are interlinked with other Linked Data

sets. MSM-schema properties are directly stored in iServe, while additional properties

are captured in our SmartLink NfP repository11. The repository provides a SPARQL

endpoint12. Following rdfs:isDefinedBy links from SmartLink to iServe, more

information about the functionalities and behaviours of the services can be retrieved.

Being an LOD-compliant environment, one of the core features of SmartLink is the

capability to associate service descriptions with so-called model references which

refer to RDF descriptions in external vocabularies defining the semantics of the

11 http://ckan.net/package/smartlink
12 http://smartlink.open.ac.uk/smartlink/sparql

service or its parts. However, while this feature is useful and even necessary in order

to provide meaningful service models, finding appropriate model references across

the entire Web of data is a challenging task. Therefore, SmartLink uses established

Linked Data APIs – currently the WATSON13 API - to identify and recommend

suitable model references to the user.

Fig. 3. SmartLink – Service editor.

After loading RDF triples from both iServe and SmartLink, the editor visualizes the

description of a service as shown in Fig. 3. The left-hand side of the editor is the tree-

based overview of the service, which represents a hierarchy composed of a service, its

operations and input/output messages. The right hand side displays more details about

the selected element in a form, which essentially include the semantics, categories,

and literal descriptions. To persistently store changes made to a service description,

SmartLink publishes the descriptions as Linked Data by invoking the RESTful APIs

provided by iServe and the SmartLink NfP repository. SmartLink currently provides

mechanisms that enable the export of particular service instances as RDF or human-

readable HTML. In order to facilitate service model transformation between MSM

and other SWS formalisms, current research deals with the establishment of an export

mechanism of MSM/SmartLink NfP services. In addition, SmartLink also offers a

simple UI for filtering services by NfPs. That way, developers can easily construct

queries without having to formulate SPARQL queries to create specific views on the

services data.

4 Discussion and conclusion

In this paper, we have proposed SmartLink which provides (a) an RDF schema which

allows to describe non-functional properties of Web APIs and services (SmartLink

NfP) and (b) a public environment which enables developers to annotate services and

store descriptions in a public Linked Data-compliant store, to interlink them with

other service descriptions such as the ones offered by iServe, and to search for

available services and APIs by exploiting the structured semantics of the SmartLink

NfP repository. To this end, SmartLink facilitates software engineering processes,

particularly in the context of the prevailing SOA paradigm, by supporting developers

in annotation and discovery of software components, i.e., services and APIs, across

the Web.

13 http://watson.kmi.open.ac.uk/WatsonWUI/

Currently ongoing work deals with the exploitation of SmartLink in the context of

two European projects, NoTube and mEducator (see [10]). While NoTube exploits the

SmartLink approach merely as a means to aid software developers in documenting

and searching software/services, in mEducator SmartLink also supports the execution

and alignment of heterogeneous services. However, while the currently implemented

execution approach is tailored to a specific kind of services – educational metadata

harvesting services – no general-purpose execution approach had been developed yet.

From our initial use cases, a few observations have been made which will shape

our future efforts. Current research and development deals with the extension of the

MSM/SmartLink NfP schemas by taking into account execution and composition

oriented aspects. These extensions will be supported by the development of additional

APIs, which allow the discovery, execution and semi-automated composition of

Linked Services in a general-purpose fashion.

Acknowledgements. This work is partly carried out within the research projects

NoTube and mEducator, kindly funded by the European Commission. The authors

would like to thank the European Commission for their support.

5 References

[1] Bizer, C., T. Heath, et al. (2009). "Linked data - The Story So Far." Special Issue on

Linked data, International Journal on Semantic Web and Information Systems (IJSWIS).

[2] Dietze, S., Benn, N., Yu, H., Pedrinaci, C., Makni, B., Liu, D., Lambert, D., and

Domingue, J. (2010) Comprehensive service semantics and light-weight Linked Services:

towards an integrated approach, Workshop: Fourth International Workshop SMR2 2010

on Service Matchmaking and Resource Retrieval in the Semantic Web at 9th International

Semantic Web Conference (ISWC), Shanghai, China

[3] Fensel, D.; Lausen, H.; Polleres, A.; de Bruijn, J.; Stollberg,, M.; Roman, D.; and

Domingue, J. 2007. Enabling Semantic Web Services: The Web Service Modeling

Ontology. Springer.

[4] Kopecky, J.; Vitvar, T.; and Gomadam, K. (2008). MicroWSMO. Deliverable, Conceptual

Models for Services Working Group, URL: http://cms-

wg.sti2.org/TR/d12/v0.1/20090310/d12v01_20090310.pdf.

[5] Maleshkova, M., Pedrinaci, C., and Domingue, J. (2009). Supporting the creation of

semantic restful service descriptions. In Workshop: Service Matchmaking and Resource

Retrieval in the Semantic Web (SMR2) at 8th International Semantic Web Conference.

[6] Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S., Narayanan,

S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., and Sycara, K. (2004).

OWL-S: Semantic Markup for Web Services. W3C Member Submission November 2004.

[7] Pedrinaci, C., and Domingue, J. Toward the Next Wave of Services: Linked Services for

the Web of Data. Journal of Universal Computer Science, 16(13):1694–1719, 2010.

[8] Sheth, A. P., Gomadam, K., and Ranabahu, A. (2008). Semantics enhanced services:

Meteor-s, SAWSDL and SA-REST. IEEE Data Eng. Bul l., 31(3):8–12.

[9] Vitvar, T.; Kopecky, J.; Viskova, J.; and Fensel, D. 2008. Wsmo-lite annotations for web

services. In Hauswirth, M.; Koubarakis, M.; and Bechhofer, S., eds., Proceedings of the

5th European SemanticWeb Conference, LNCS. Berlin, Heidelberg: Springer Verlag.

[10] Yu, H. Q., Dietze, S., Li, N., Pedrinaci, C., Taibi, D., Dovrolis, N., Stefanut, T., Kaldoudi,

E., Domingue, J., A Linked Data-driven & Service-oriented Architecture for Sharing

Educational Resources, in Proceedings of Linked Learning 2011: the 1st International

Workshop on eLearning Approaches for the Linked Data Age, CEUR-Vol 717, 2011.

