
Probabilistic Abox Abduction in Description

Logics

Murat Şensoy1, Achille Fokoue2, Mudhakar Srivatsa2, and Jeff Z. Pan1

1Department of Computing Science, University of Aberdeen, UK
2IBM T. J. Watson Research Center, NY, USA

Abstract. ABox abduction is the process of finding statements that
should be added to an ontology to entail a specific conclusion. In this
paper, we propose an approach for probabilistic abductive reasoning for
SHIQ. Our evaluations show that the proposed approach significantly
extends classical abduction by effectively and correctly estimating prob-
abilities for abductive explanations. Lastly, based on the ideas proposed
for SHIQ, we describe a tractable algorithm for DL-LiteR.

1 Introduction

The prevailing framework for querying and reasoning over data on the semantic
web has been based on logical deduction: the ability to infer and retrieve implied
facts logically entailed from a knowledge base. A number of highly optimized
deductive reasoners (e.g., Pellet [20], KAON2 [8], Hermit [14], TrOWL [22])
have been developed in compliance with the Web Ontology Language standard
(OWL) and successfully used in various applications (e.g., Matching Patients to
Clinical Trials [16]).

However, there is a growing realization in the semantic web community [5]
that deduction is insufficient for new classes of applications that could leverage
the increasing number of formal ontologies available on the semantic web and in
knowledge rich domains such as heathcare and life sciences. Applications that
seek to explain observations (e.g., a patient’s symptoms or errors or failures
in a complex systems) or expectations that are not logically entailed from our
current knowledge would greatly benefit from an abductive reasoning paradigm.
Abductive reasoning is the process of finding the explanations for a set of obser-
vations. In this context, an explanation is a set of axioms S that, if added to a
knowledge base K, will ensure that the combined knowledge base (K ∪ S) now
logically entails the set of observations.

In many situations, the number of abductive explanations for an axiom could
be very high, making it very costly to process all of these explanations. Various
criteria have been considered in the literature to define a preference order on
abductive explanations and to select the best explanations. Preferred explana-
tions are typically the smallest in terms of either their number of axioms or
according to subset inclusion. However, the smallest explanation in terms of size
or set inclusion is not necessarily the most likely. Formal attempts to define the

SSWS 2011

106

best logical abductive solutions in terms of their likelihood have traditionally re-
quired an explicit specification of a probabilistic model as part of the background
knowledge [9, 17].

In this paper, we formalize the notion of likelihood of solutions w.r.t. to a
background knowledge without extending the Description Logic (DL) formal-
ism with a probabilistic model. We propose a novel approach for probabilistic
Abox abduction for SHIQ, one of the most expressive DLs. In this approach,
instead of extending DL formalism with a probabilistic model, we rely on the
ability to discover patterns of explanations in a background knowledge base
and compute simple statistics to find the most prevalent patterns in the knowl-
edge base. Then, we estimate the likelihoods of abductive explanations based on
these statistics. Through empirical studies, we compare the proposed approach
with non-probabilistic abduction where the abductive explanations are assumed
equally likely. We show that the proposed approach can effectively estimate the
likelihoods of the abductive explanations.

Reasoning in SHIQ is known to be intractable [1]. Our empirical studies
also highlight the fact that abductive reasoning in SHIQ is computationally ex-
pensive. Based on the ideas proposed for SHIQ, we have described a tractable
algorithm for probabilistic abduction in DL-LiteR [2], the theoretical underpin-
ning of OWL 2.0 QL profile. In particular, we show that the computational
complexity class of this algorithm is the same as the computational complexity
class of instance checking and conjunctive query answering in DL-LiteR.

The remainder of the paper is organized as follows. Section 2 introduces pre-
liminaries necessary to follow the paper. Section 3 describes a non-probabilistic
abduction approach for SHIQ and Section 4 builds our probabilistic abduction
for SHIQ upon it. Section 5 evaluates the proposed approach through empirical
studies and Section 6 proposes a tractable approach for probabilistic abduction
in DL-LiteR. Lastly, Section 7 discusses the related work and Section 8 concludes
the paper with an overview.

2 Preliminaries

2.1 SHIQ Description Logics

In this paper, unless stated otherwise, we consider ontologies of SHIQ expres-
siveness. In this section, we briefly introduce the semantics of SHIQ, which is
equivalent to OWL-DL 1.0 1 minus nominals and datatype reasoning, as shown
in Table 1 (We assume the reader is familiar with Description Logics [1]). Let
NC be the set of atomic concepts, NR be the set of atomic roles, and NI be the
set of individuals. NC , NR, and NI are mutually disjoint. Complex concepts and
roles are built using constructs presented in Table 1(a).

A SHIQ knowledge base K = (T ,A) consists of a Tbox T and an Abox A.
A Tbox T is a finite set of axioms, including:

– transitivity axioms of the form Trans(R) where R is a role.

1 http://www.w3.org/2001/sw/WebOnt

SSWS 2011

107

Definitions Semantics

C ⊓D CI ∩DI

C ⊔D CI ∪DI

¬C ∆I\CI

∃R.C {x|∃y. < x, y >∈ RI , y ∈ CI}

∀R.C {x|∀y. < x, y >∈ RI ⇒ y ∈ CI}

≤ nR C {x| |{< x, y >∈ RI ∧ y ∈ CI}|
≤ n}

≥ nR C {x| |{< x, y >∈ RI ∧ y ∈ CI}|
≥ n}

R− {< x, y > | < y, x >∈ RI}

Axioms Satisfiability conditions

Trans(R) (RI)+ = RI

R ⊑ P < x, y >∈ RI ⇒< x, y >∈ P I

C ⊑ D CI ⊆ DI

a : C aI ∈ CI

R(a, b) < aI , bI >∈ RI

a ˙6=b aI 6= bI

(a) Constructors (b) Axioms

Table 1. SHIQ Description Logic

– role inclusion axioms of the form R ⊑ P where R and P are roles.⊑∗ denotes
the reflexive transitive closure of the ⊑ relation on roles.

– concept inclusion axioms of the form C ⊑ D where C and D are concept
expressions.

An Abox A is a set of axioms of the form a : C, R(a, b), and a ˙6=b.
As for First Order Logic, a model theoretical semantic is adopted here. In the

definition of the semantics of SHIQ, I= (∆I , .I) refers to an interpretation
where ∆I is a non-empty set (the domain of the interpretation), and .I , the
interpretation function, maps every atomic concept C to a set CI ⊆ ∆I , every
atomic role R to a binary relation RI ⊆ ∆I × ∆I , and every individual a to
aI ∈ ∆I . The interpretation function is extended to complex concepts and roles
as indicated in the second column of Table 1(a).

An interpretation I is a model of a knowledge base K = (T ,A), denoted
I |= K, iff. it satisfies all the axioms in A, and T (see Table 1(b)). A knowledge
base K = (T ,A) is consistent iff. there is a model of K. Let α be an axiom, a
knowledge base K entails α, denoted K |= α, iff. every model of K satisfies α.

2.2 Conjunctive Query

Given a knowledge base K and a set of variables NV disjoint from NI , NR,
and NC , a conjunctive query q is of the form x1, ..., xn ← t1 ∧ ... ∧ tm where,
for 1 ≤ i ≤ n, xi ∈ NV and, for 1 ≤ j ≤ m, tj is a query term. A query
term t is of the form C(x) or R(x, y) where x and y are either variables in NV

or individuals in NI , C is an atomic concept and R is an atomic role. body(q)
denotes the set of query terms of q. V ar(q) refers to the set of variables occurring
in query q, and DV ar(q) = {x1, ..., xn} is the subset of V ar(q) consisting of
distinguished (or answer) variables. Non-distinguished variables (i.e., variables
in V ar(q)−DV ar(q)) are existentially quantified variables.

Let π be a total function from the set DV ar(q) of distinguished variables to
the set NI of individuals. We say that π is an answer to q in the interpretation

SSWS 2011

108

I, denoted I |= q[π], if there exists a total function φ from V ar(q) ∪ NI to ∆I

such that the following hold:

– if x ∈ DV ar(q), φ(x) = π(x)I

– if a ∈ NI , φ(a) = aI

– φ(x) ∈ CI for all query terms C(x) ∈ body(q).
– (φ(x), φ(y)) ∈ RI for all query terms R(x, y) ∈ body(q).

ans(q, I) denotes the set of all answers to q in I . π is said to be a certain answer
to q over a knowledge base K iff. π ∈ ans(q, I) for every model I of K. The set
of all certain answers of q over K is denoted cert(q,K).

2.3 Abductive Reasoning

Abduction is an important reasoning service which provides possible explana-
tions (or hypotheses) for observations that are not entailed by our current knowl-
edge. In this section, we briefly formalize the notion of Abox abduction.

Definition 1 An abox abduction problem is a tuple (K,H, A(a)), where K =
(T ,A) is a knowledge base, called the background knowledge base, H is a set of
atomic concepts or roles, A is an atomic concept and a is an individual appearing
in the Abox A of K such that K does not entail A(a).

In the previous definition,K corresponds to the background knowledge whose
Tbox provides a conceptualization of the domain of discourse. H represents the
concepts and roles that may appear in an explanation for the observation A(a).

Definition 2 A solution to an abox abduction problem P = (K = (T ,A),H,
A(a)) is a set S = {C(u)|C ∈ H, u ∈ NI} ∪ {R(u, v)|R ∈ H, (u, v) ∈ N 2

I } of
abox assertions such that:

1. The knowledge base (T ,A ∪ S) is consistent
2. (T ,A∪ S) |= A(a)

3 Non-Probabilistic Abduction for SHIQ

Given an extensionally reduced SHIQ knowledge base K = (T ,A), the KAON2
transformation computes a disjunctive datalog program with equality, denoted
by DD(K). This datalog program is the union of a set of function-free rules com-
piled from T by exploiting certain resolution operations [8] and a set of ground
rules directly translated from A. Hustadt et al. showed that K is consistent if
and only if DD(K) is satisfiable [8]. The most state-of-the-art abduction sys-
tems [10, 13] are built on Prolog engines that work on plain datalog programs.
Du et al. described a procedure to translate DD(K) into a Prolog program K̄.
That is, using a chain of transformation, we can convert K into a Prolog program
K̄. Then, we can solve the abductive reasoning problem using K̄ and existing
abductive reasoning methods for plain datalog programs [4]. In this section, we

SSWS 2011

109

exploit this approach to find all abductive explanations for A(a), then in Sec-
tion 4 we propose an approach to estimate likelihoods for these explanations.

Figure 1 shows a simplified Prolog program for abductive reasoning over K̄.
This simple program is composed of six rules. Using only six rules, this program
defines the predicate abduce(A,S), where A is an axiom such as
′Alcoholic′(′V ictoria′) and S is a solution to the abduction problem (i.e., abduc-
tive explanation) computed by the program. For this purpose, it simply starts
with an empty set of axioms as shown in the rule 1 and populates it iteratively
based on other rules. The rule 2 guarantees that already entailed Abox axioms do
not appear in S. The rule 4 expands a complex abox axiom into its components
by finding a clause in K̄ so that the head of the clause unifies the axiom. The rule
5 prevents redundancies in the solution. The rule 6 expands an existing partial
solution by adding a new axiom if this axiom is an abducible and this addition
does not create an inconsistency. Abducibles correspond to H, i.e., the concepts
or roles that we desire to appear in the solution. If a concept or role does not
appear in the head of any clause in the prolog knowledge base, then it should also
be an abducible. We may note that concept or role expressions in K may results
in cycles in K̄. For instance, an expression such as ∃hasParent.human ⊑ human
leads to a Prolog clause human(X) : − hasParent(X,Y), human(Y). For the
sake of simplicity, we have not shown it in Figure 1, but we implemented rule 4
so that it does not expand an axiom if this expansion results in a loop, instead
this axiom is added directly to the solution. In this way, we prevent infinite loops
during abductive reasoning.

1. abduce(A,S):-
abduce(A,[],S).

2. abduce(A,S,S):-

holds(A),!.
3. abduce((A,B),S0,S):-!,

abduce(A,S0,S1),

abduce(B,S1,S).
4. abduce(A,S0,S):-!,

clause(A,B),
abduce(B,S0,S).

5. abduce(A,S,S) :-
member(A,S),!.

6. abduce(A,S,[A|S]):-

abducible(A),
checkConsistency([A|S]).

Fig. 1. Simplified abductive reasoner for plain datalog programs.

4 Probabilistic Abduction for SHIQ

Various minimality criteria have been considered in the literature to define a
preference order on solutions to an abduction problem. Preferred solutions are
typically the smallest in terms of either their number of axioms or according to
subset inclusion. However, the smallest explanation in terms of size or set inclu-
sion is not necessarily the most likely. Formal attempts to define the best logical

SSWS 2011

110

abductive solutions in terms of their likelihood have traditionally required an
explicit specification of a probabilistic model as part of the background knowl-
edge [9, 17]. In this section, we formalize the notion of likelihood of solutions
w.r.t. to the background knowledge without extending the DL formalism with
a probabilistic model. First, we introduce, as a running example, the following
knowledge base K = (T ,A):

Example 1. T = {∃addictedTo.AlcoholicBeverage ⊑ Alcoholic,

W ine ⊑ AlcoholicBevarage,Whisky ⊑ AlcoholicBevarage,

V odka ⊑ AlcoholicBevarage,RedWine ⊑Wine,WhiteWine ⊑Wine

Man ⊑ Person,Woman ⊑ Person,Man ⊑ ¬Woman}

A = {addictedTo(Mary, red1), addictedTo(Helen, red2), addictedTo(Jane,white1)

addictedTo(Elisabeth, vodka1), addictedTo(Elisabeth,whisky1),

addictedTo(John, vodka2), addictedTo(Paul, vodka1), addictedTo(Henry,vodka2),

addictedTo(Bob, vodka3), addictedTo(James,whisky1),

WhiteWine(white1),Whisky(whisky1),Woman(V ictoria)}
⋃
{RedWine(redn)|1 ≤ n ≤ 2}

⋃
{V odka(vodkan)|1 ≤ n ≤ 3}

The following are valid solutions to the abduction problem P = (K,H =
{addictedTo, V odka,Wine,RedWine,WhiteWine,Whisky}, Alcoholic(V ictoria)):

S1 = {addictedTo(V ictoria, vodka1}
S2 = {addictedTo(V ictoria, newWine),Wine(newWine)}

Which of the two explanations is more likely given the background knowledge
base? In (T ,A∪ S1), the only abox justification2 for Alcoholic(V ictoria), i.e. a
minimum set of Abox assertions J such that (T ,J) |= Alcoholic(V ictoria), is
J1 = {addictedTo(V ictoria, vodka1), V odka(vodka1)}, whereas
J2 = {addictedTo(V ictoria, newWine),Wine(newWine)} is the only justifica-
tion for Alcoholic(V ictoria) in (T ,A ∪ S2). Now, the justification J1 can be

abstracted into a pattern of justifications ̂J1 = x ← addicted(x, y) ∧ V odka(y)
representing all justifications of Alcoholic(x) involving an addiction to a V odka.
In the background knowledge base K, 5 out of 10 justifications for Alcoholic(x),

with x an individual in A, are instances of the pattern ̂J1. Intuitively, a jus-
tification J for Alcoholic(a), where a is an individual in A, is an instance of

the pattern ̂J1 = x ← addictedTo(x, y) ∧ V odka(y) iff. the conjunctive query
x← addictedTo(x, y)∧V odka(y) issued over (T ,J) has a as an answer. On the
other hand, only 3 out of 10 justifications for Alcoholic(x) in the background KB

K are instances of the justification pattern ̂J2 = x← addictedTo(x, y)∧Wine(y)
associated with J2. The likelihood of the solution S1 (resp. S2)), denoted Pr(S1)
(resp. Pr(S2)), is 0.5 (resp. 0.3). Thus, S1 appears as the most likely solution.

Next, we formally define the notions of a justification pattern and an instance
of a justification pattern.

Definition 3 Let B be a subset of the Abox A of a knowledge base K and a be an

individual in B. The abox pattern with focus a, denoted ̂B(a), associated with B

2 An abox justification for an axiom is a minimal set of a-box assertions entailing it.

SSWS 2011

111

is the conjunctive query x← t1 ∧ ...∧ tn such that {t1, ..., tn} = {A(π(b))|A(b) ∈
B}∪{R(π(b), π(c))|R(b, c) ∈ B}, where π is an injective mapping from individuals
in B to new variables such that π(a) = x.

Definition 4 Given a knowledge base K = (T ,A), a subset S of A containing
the individual b is an instance with focus b of an abox pattern q = x← t1∧...∧tn,
denoted S |=b q, iff. (x→ b) ∈ cert(q, (T ,S)).

Notation 1 Ω(K,A(a)) denotes the set of all abox justifications for A(a) in
K = (T ,A), where A is an atomic concept and a is an individual in A. Then,
|Ω(K, A|B)| is the number of all justifications in the background knowledge base
K for answers of the conjunctive query x← A(x) that are also instances of the
concept B. Given Ind(A) denotes the set of individuals in A, |Ω(K, A|B)| is
computed as follows.

|Ω(K, A|B)| =
∑

a∈Ind(A) s.t. K|=B(a)

|Ω(K, A(a))|

Let S be a solution to an abduction problem (K = (T ,A),H, A(a)), com-
puted on K̄ as described in Section 3. Assuming that J is the only justification
for A(a) in A ∪ S, the likelihood of the solution S is intuitively the fraction of
justifications for the answers to the query x ← A(x) in the background KB K
that conform to (ie. are instances of) the abox pattern associated with J ∪ S.
Now, in Definition 5, we define how unconditional likelihoods for the solutions
could be computed, where the number of justifications in the background KB,
|Ω(K, A)|⊤|, is a measure of our confidence in the computed likelihood. Here,
the unconditional likelihood of an explanation S is formalised as the likelihood
of the most probable justification of A(a) in K ∪ S. Let J be a justification of
A(a), then the probability of J , denoted as Prjust(J), is computed as frequency
of the justification pattern derived from J in all abox justifications for the cur-
rent instances of A, i.e., Ω(K, A|⊤). Consider Example 1, the likelihood of S1 is
higher than that of S2, since addiction to vodka is more frequent than addiction
to wine among all known alcoholics.

Definition 5 The unconditional likelihood of a solution S of an abduction prob-
lem (K = (T ,A),H, A(a)), denoted Pr(S), is the real number between 0 and 1
defined as follows:

– if cert(x← A(x),K) = ∅, Pr(S) = 0
– if cert(x← A(x),K) 6= ∅,

Pr(S) = maxJ∈Ω((T ,A∪S),A(a)) Prjust(J)

Prjust(J) =
∑

b∈ind(A) |{J
′|J ′∈Ω(K,A(b)) and J ′|=b ̂(J∪S)(a)}|

|Ω(K,A|⊤)|

Following Definition 5, let us note that if S has an axiom not entailed by
any justification for A(b), with b an individual in A, Pr(S) = 0. This follows
from the fact that no justification J ′ in K will be an instance of the pattern,

SSWS 2011

112

̂(J ∪ S)(a), associated with J ∪ S, where J is a justification in (T ,A ∪ S) for
A(a). For example, Pr(S1 ∪ {Person(V ictoria)}) = 0, where S1 is the first
solution introduced in the running example.

While computing likelihoods for solutions it is key to compute Ω(K, A(a)).
Now we briefly describe how to compute it. Given an arbitrary primitive concept
C and individual i in K, K |= C(i) iff. K̄ |= C(i), so in order to efficiently
compute abox justifications for C(i), we use a Prolog meta-interpreter [21] that
tracks the steps while proving C(i) in K̄. Hence, using the meta interpreter, we
enumerate all proofs for A(i) in K̄, each of which is one justification. Based on
these justifications, we compute Ω(K, A(i)).

Now, suppose the set of axioms {Woman(Mary),Woman(Helen),Woman(Jane),
Woman(Elisabeth), Man(John) , Man(Paul), Man(Henry), Man(Bob),
Man(James)} were added to the Abox A of Example 1. It could be argued
that the most likely solution for P , is S2 = { addictedTo(V ictoria, newWine),
Wine(newWine)} instead of S1 = {addictedTo(V ictoria, vodka1} because, when
we consider only female alcoholics, 3 out of 4 are addicted to Wine and Victoria
is known to be a woman. Assuming that we have enough instances of the concept
Woman in the background KB, a more appropriate measure is the likelihood
of a solution to P knowing that V ictoria is a Woman. The following definition
formalizes the notion of conditional likelihood.

Definition 6 The conditional likelihood of a solution S of an abduction prob-
lem (K = (T ,A),H, A(a)) knowing a is an instance of a concept C, denoted
Pr(S|C), is the real number between 0 and 1 defined as follows:

– if cert(x← A(x) ∧ C(x),K) = ∅, Pr(S) = 0
– if cert(x← A(x) ∧ C(x),K) 6= ∅,

Pr(S|C) = maxJ∈Ω((T ,A∪S),A(a)) Prjust(J |C)

Prjust(J |C) =
∑

b∈ind(A) and K|=C(b) |{J
′|J ′∈Ω(K,A(b)) and J ′|=b ̂(J∪S)(a)}|

|Ω(K,A|C)|

Definition 6 allows us to estimate the likelihood of abductive explanations
(i.e., solutions for the abduction problem) for A(a) within the context that we
know a is an instance of the concept C. If C is too specific, then it significantly
reduce our confidence on Pr(S|C) by reducing |Ω(K, A|C)|. For instance, if C
is a concept with only three instances {a, b, c} in K, then |Ω(K, A|C)| can be
much smaller than desired. To select the best context, here we propose starting
from the most specific context and iteratively generalize it until our criteria for
an acceptable context holds. This idea is formalized in the algorithm below. The
algorithm accepts a knowledge base K = (T ,A) and the threshold N as input to
find the most specific concept description C acceptable for serving as a context.
Here, N determines the minimum number of individuals C should have to stop
further generalization. In the algorithm, we keep a set S representing the set of
C’s direct super concepts. Initially, C is set to the most specific context C′, which
is the intersection of a’s direct types (line 1), and S contains only C′ (line 2).
While C has a number of individuals less than N and S contains some elements,
we get the most specific element s ∈ S (line 4). The most specific element is

SSWS 2011

113

a concept or a concept description having the longest path to the top concept
⊤ when put into the concept hierarchy derived from K. Then, we update S by
removing s and adding super concepts of s (line 5). Some super concepts of s
may be equivalent to s, so we remove these while updating S. Lastly, at the
end of each iteration, we set C to a DL concept description, the intersection of
elements in S (line 6). If S contains only one element, C is set to this element.
By selecting the most specific element at each iteration during generalization, we
aim fine grained generalization. However, if the total number of individual in the
ontology is less than N , S becomes empty after the removal of the top concept
⊤ and the generalization stops; the algorithm returns ⊤ in this situation.

findContext(K = (T ,A), a,N))
Input: K = (T ,A) a knowledge base, a an individual, N a threshold
Output: C a concept description representing context
(1) C = C′ = intersectionOf(getDirectTypes(a))
(2) S = {C′}
(3) while |getIndividuals(C,K)| < N and |S| > 0
(4) s = getMostSpecific(S,T)
(5) S = S \ {s} ∪ supers(s,T) \ equivalents(s, T)
(6) C = intersectionOf(S)
(7) return C

The algorithm allows us to generalize context gradually until reaching a con-
cept description C that has desirable number of instances. However, at each
iteration, the distance between the new C and the most specific context C′ may
increase further.This brings the risk of having a context with enough number of
instances, but failing represent a as expected. Once we define a distance metric
between two concept descriptions C′ and C, we can introduce another threshold
δ for distance and avoid over generalization by testing distance(C,C′) < δ dur-
ing iterations, at line 3 of the algorithm. We can use various distance metrics,
two of which can be summarized as: i) the number of iterations done to derive
C from C′ and ii) the distance between the concept descriptions C′ and C in
the concept hierarchy derived from K, after inserting them as new concepts into
K if they do not exist there already.

In Definition 6, the likelihood of a solution is defined in terms of justifications
in the background knowledge base. Unfortunately, computing all justifications
is well known to be intractable [11]. In Section 6, we show that abductive expla-
nations and their likelihoods can be computed efficiently (PTime in the size of
the TBox and LogSpace in the size of the Abox) for DL-LiteR KBs.

5 Evaluation of Abduction in SHIQ

In order to evaluate our approach, we have randomly created five SHIQ ontolo-
gies.Properties of these ontologies are listed in Table 2. Each of these ontologies
contains 10 target concepts. We measure the performance of the proposed ap-
proach through these target concepts. Each target concept C has at least n
possible patterns of justification.

SSWS 2011

114

For each individual I in ontology O, we select a target concept C. Then,
among all justification patterns of C, we randomly select one pattern ̂J . Based
on the selected justification pattern, we add new ABox axioms to O so that I
would be an instance of C. For instance, if ̂J is a pattern of three atoms such as
C(X)← A(X), B(X,Y), D(Y), three ABox axioms A(I), B(I, i), and D(i) are
added to O, where i is another individual from O. We also extend the ABox by
randomly adding other axioms about I, as long as these axioms do not lead to a
second justification for C(I). Let us note that justifications for instances of C in
O are not uniformly distributed, because while selecting justification patterns of
C for individuals, we use power low distribution instead of uniform distribution.
This means that most of the justifications for C are instances of small number
of justification patterns of C, while most justification patterns of C have a few
or no instances in O.

We evaluate an abductive reasoning approach based on a target concept C
as follows. First, we pick I, an instance of C. Let J be the justification for C(I).
Second, we randomly select a subset of the axioms in J , denoted as Γ . Third, we
remove the axioms in Γ from O. Hence, C(I) does not hold any more. Fourth,
using the abductive reasoning approach, we compute all abductive explanations
of C(I) for O with their probabilities. Let EΓ be the abductive explanation uni-
fying with Γ . Performance of the abduction approach is Pr(EΓ), which is the
estimated probability of EΓ by the abduction approach. Here, we compared three
abductive reasoning approaches: non-probabilistic abduction (NPA), uncondi-
tional probabilistic abduction (UPA), and conditional probabilistic abduction
(CPA). In NPA, after computing all abductive explanations, each explanation
is considered equally likely, so if there are n explanations in total, each of them
will have probability 1/n. In CPA, we have used threshold N = 20 while gener-
alizing context during abduction.

Table 2. Synthetic ontologies with different numbers of atomic concepts (#C), roles
(#R), individual (#I), TBox axioms (#TA), and ABox axioms (#AA).〈n〉 denotes
average number of justification patterns for main concepts.

Ontology #C #R #I #TA #AA 〈n〉
O1 187 20 1000 339 4000 18
O2 285 40 3732 602 12000 33
O3 393 50 5199 719 13646 54
O4 381 60 4795 722 17985 63
O5 353 70 5283 691 23418 234

We have conducted experiments for 100 individuals in each ontology. Aver-
age values for our experiments are listed in Table 3, where 〈#E〉 is the average
number of explanations for C(I); 〈PNPA〉, 〈PUPA〉, and 〈PCPA〉 are the aver-
age performances of NPA, UPA, and CPA respectively; 〈TNPA〉, 〈TUPA〉, and
〈TCPA〉 are average time spent in milliseconds by NPA, UPA, and CPA respec-
tively. We can summarize our findings as follows. As the number of explanations
increase, the performance of classical abduction decreases as expected. while the

SSWS 2011

115

performance of UPA always significantly outperform NPA, it could not exceed
0.23 in the experiments. However, the performance of CPA is always around
0.8. These are the results for synthetic ontologies, where we have created abox
axioms around a number of justification patterns. To test our approach using an
ontology which is not created with justification patterns in mind, we have also
conducted experiments using Wine− ontology, which is the W3C’s Wine ontol-
ogy [19] without nominals. Our results for Wine− endorse our findings based on
the synthetic ontologies. That is, UPA and CPA significantly outperform NPA,
i.e. at the magnitudes of 7 and 11 respectively. In general, during the compu-
tation of probabilities, CPA requires significantly more time than UPA does.
Our analysis of time consumption highlights that the probabilistic abduction in
SHIQ is expensive computationally as expected. In the following section, we
propose a tractable algorithm for probabilistic abductive reasoning in DL-LiteR.

Table 3. Results for synthetic ontologies and Wine− ontology (N = 20 for CPA).

Ontology 〈#E〉 〈PNPA〉 〈PUPA〉 〈PCPA〉 〈TNPA〉 〈TUPA〉 〈TCPA〉
O1 15 0.073 0.23 0.84 73 ms. 850 ms. 1293 ms.
O2 31 0.033 0.099 0.82 204 ms. 5612 ms. 7266 ms.
O3 45 0.023 0.177 0.80 449 ms. 9643 ms. 12274 ms.
O4 52 0.020 0.055 0.83 678 ms. 34183 ms. 35264 ms.
O5 135 0.011 0.056 0.82 2658 ms. 70356 ms. 73938 ms.

Wine− 70 0.014 0.099 0.16 37251 ms. 37288 ms. 46916 ms.

6 DL-LiteR Probabilistic Abduction Algorithm

In this section, we present a tractable algorithm to compute solutions to an ab-
duction problem P = (K,H, A(a)) along with their likelihood. The expressivity
of background knowledge base K is restricted to DL-LiteR [2], the theoretical un-
derpinning of OWL 2.0 QL profile. In particular, we show that the computational
complexity class of this algorithm is the same as the computational complexity
class of instance checking and conjunctive query answering in DL-LiteR.

First, we remind the restrictions imposed by DL-LiteR. Concepts and roles
are formed according to the following syntax (A denotes an atomic concept and
P an atomic role):

B → A | ∃R R→ P | P− (1)

C → B | ¬B E → R | ¬R (2)

Furthermore, Tbox axioms are restricted to the following forms: B ⊑ C and
R ⊑ E.

A key property of DL-LiteR is that conjunctive query answering in a KB
K = (T ,A) can be reduced to union of conjunctive query answering against the
KB K′ = (∅,A) with an empty Tbox. In other words, through query rewrite, the
relevant part of T can be compiled into a new query. In [2], for a conjunctive

SSWS 2011

116

query q and a Tbox T , the result of the rewritting, denoted PerfectRef(q, T),
is a set of conjunctive queries such that, for any Abox A, cert(q, (T ,A)) =
⋃

q′∈PerfectRef(q,T) cert(q
′, (∅,A)).

For example, after removing the axiom ∃addictedTo.AlcoholicBeverage ⊑
Alcoholic from the Tbox of our running example, it becomes a DL-LiteR KB.
For the query q = x← AlcoholicBeverage(x),

PerfectRef(q, T) = {x← AlcoholicBeverage(x), x←Wine(x), x← RedWine(x),

x← WhiteWine(x), x← V odka(x), x←Whisky(x)}

Our approach to compute solutions to an abduction problem and their likeli-
hood relies on the observation that an abox justification for A(a) in a DL-LiteR
KB K = (T ,A) must be an instance of the pattern formed by the body of one
query in PerfectRef(x← A(x), T).

Proposition 1 Let K = (T ,A) be a DL-LiteR knowledge base and A be an
atomic concept such that (T , ∅) does not entail ⊤ ⊑ A. J is an abox justification
for A(a) in K iff. there exist q ∈ PerfectRef(x ← A(x), T) and a mapping
π from V ar(q) ∪ Ind(J) to the set Ind(J) of individuals in J such that (1)
π(x) = a, (2) for b ∈ Ind(J), π(b) = b, and

(3) J = {C(π(u))|C(u) ∈ body(q)} ∪ {R(π(u), π(v))|R(u, v) ∈ body(q)}

Notation 2 In the remainder of the paper, for a query q and a mapping π from
V ar(q) ∪NI to NI , construct(q, π) is the abox defined as follows:

construct(q, π) = {C(π(u))|C(u) ∈ body(q)}∪{R(π(u), π(v))|R(u, v) ∈ body(q)}

Proof. – Suppose J is a abox justification forA(a) inK. Since a is an answer to
x← A(x), there exist q ∈ PerfectRef(x← A(x), T) and a mapping π from
variables in q to individuals in J such that π(x) = a and construct(q, π) ⊆
J . π is extended to individuals b in J (π(b) = b). Since construct(q, π) entails
A(a) and J is an abox justification for A(a), it follows that construct(q, π) =
J .

– Let us assume that there exist q ∈ PerfectRef(x ← A(x), T) and a map-
ping π from V ar(q) ∪ Ind(J) to the set Ind(J) of individuals in J sat-
isfying the three conditions of Proposition 1. The rewritting performed by
PerfectRef(p, T) is such that every generated query p′ ∈ PerfectRef(q, T)
has at most the same number of atoms as p and has at least one atom. There-
fore |construct(q, π)| = 1, which makes construct(q, π) mininal since (T , ∅)
does not entail ⊤ ⊑ A. Thus, construct(q, π) is an abox justification for
A(a).

Algorithm COMPUTESOLUTIONS computes a set of canonical solutions. Those
solutions are canonical in the sense that, as shown in Theorem 1, an expla-
nation for a solution not returned by COMPUTESOLUTIONS is always an instance
of the pattern formed by a solution returned by COMPUTESOLUTIONS. Algorithm

SSWS 2011

117

COMPUTESOLUTIONS invokes Algorithm COMPUTEOMEGA to compute in |Ω(K, A|C)|.
Before formally presenting properties of Algorithm COMPUTESOLUTIONS, we briefly
introduce below an important notation used in COMPUTESOLUTIONS.

Notation 3 For a conjunctive query q, the query q is the conjunctive query
with the same body as q, but whose set of distinguished variables consists of all
variables in q (i.e., DV ar(q) = V ar(q)): q = x1, ..., xk ← t1 ∧ ... ∧ tm where
tj ∈ body(q) for 1 ≤ j ≤ m, and x1, ..., xk are all variables in body(q). Example,
if q = x← A(x) ∧R(x, y) ∧ S(y, z), then q = x, y, z ← A(x) ∧R(x, y) ∧ S(y, z).

computeSolutions(P = (K = (T ,A),H, A(a)), C)
Input: P = (K,H, A(a)) a abduction problem, C is a concept description or ⊤ s.t.
K |= C(a)
Output: set of pairs (S , p), where S is a solution to P with an conditional likelihood
p knowing a is an instance of C
(1) Ω ← computeOmega(K, A,C)
(2) foreach qi in PerfectRef(x← A(x),T)
(3) π a mapping from V ar(qi) ∪ NI to NI s.t. (1) π(x) = a, (2) for b ∈

NI , π(b) = b, and, (3) for y ∈ V ar(qi) such that y 6= x, π(y) is a new
individual not present in K

(4) S ← {C(π(u))|C(u) ∈ qi} ∪ {R(π(u), π(v))|R(u, v) ∈ qi}
(5) if (T ,A ∪ S) is consistent and concepts and roles in S are all in H
(6) ω ← |{π′|π′ ∈ cert(qi, (∅,A))} ∧ K |= C(π′(x))|
(7) emitSolution((S , ω/Ω))

computeOmega(K = (T ,A), A,C)
Input: K = (T ,A) a DL-LiteR knowledge base, A is an atomic concept, C is a concept
description or ⊤
Output: |Ω(K, A|C)|
(1) pref ← PerfectRef(x← A(x),T)
(2) r ← 0
(3) foreach qi in pref
(4) foreach π in cert(qi, (∅,A))
(5) new← true
(6) J ← construct(qi, π)
(7) // (8)-(10) ensure that J is not counted if it was previously discovered

by qj for j < i
(8) foreach qj in pref s.t. j < i
(9) if {π′|π′ ∈ cert(qj , (∅,J)) and π′(x) = π(x)} 6= ∅
(10) new← false
(11) if new and K |= C(π(x))
(12) r ← r + 1
(13) return r

Theorem 1 Let P = (K,H, A(a)) be a abductive problem such that K = (T ,A)
a DL-Lite KB. Let C be a concept description or the top concept (⊤). Algorithm

SSWS 2011

118

COMPUTESOLUTIONS(P , C) terminates. Furthermore, if S0 is a solution to P, then,
for each J ∈ Ω((T ,A ∪ S0), A(a)), there is (S, p) ∈ COMPUTESOLUTIONS(P , C)
such that the following hold:

1. Prjust(J |C) ≤ p (i.e. the conditional likelihood of J in K is less than or
equal to p)

2. J |=a ̂S(a) (i.e. J is an instance of the pattern formed by S)

The proof of Theorem 1 is a consequence of the Proposition 1.

Theorem 2 Let P = (K,H, A(a)) be a abductive problem such that K = (T ,A)
a DL-Lite KB. Let C be a concept description or the top concept (⊤). Algorithm
COMPUTESOLUTIONS(P , C) is PTime in the size of the TBox, and LogSpace in the
size of the ABox (data complexity).

Proof. The proof follows from the following properties of DL-LiteR established
in [2]:

– Consistency check and instance checking (i.e., checking K |= C(b) for an
individual b) in DL-LiteR is PTime in the size of the TBox, and LogSpace in
the size of the ABox.

– Conjunctive query answering against a KB with an empty Tbox is LogSpace
in the size of the ABox (i.e., same complexity as conjunctive query answering
against a database)

– For a conjunctive query q and a Tbox T , the maximum size of PerfectRef(q, T)
is (m(n + 1)2)n, where m is the size of the Tbox and n the size of the
query q (i.e., the number of atoms in body(q)). Therefore |PerfectRef(x←
A(x), T)| ≤ 4×m

– For a conjunctive query q and a Tbox T , if q′ ∈ PerfectRef(q, T) then the
number of atoms in q′ is at most the same as the number of atoms in q.
Therefore, if q′ ∈ PerfectRef(x← A(x), T) then q′ has at most one atom.

7 Related Work

Abduction in logic programming without probabilities has attracted a lot of at-
tention, and several algorithms, including meta-interpreters written in Prolog,
have been made [10, 13]. However, probabilistic abductive logic programming
has not been studied nearly to the same extent. Poole proposed a probabilistic
abduction approach for horn logic [17]. This approach considers a logic pro-
gramming approach that uses a mix between depth-first and branch and bound
search strategies for abduction where the probabilities are considered and only
the most likely explanations are generated. Henning has proposed an approach
for probabilistic abductive Logic programming with constraint handling rules
[3]. This approach differs from other approaches to probabilistic logic program-
ming by having both interaction with external constraint solvers and integrity
constraints. Henning used probabilities to optimize the search for explanations

SSWS 2011

119

using Dijkstra’s shortest path algorithm. Hence, the approach explores always
the most probable direction, so that investigation of less probable alternatives
is suppressed or postponed. For plan recognition tasks represented in datalog,
Raghavan andMooney proposed to use Bayesian networks while estimating prob-
abilities of abductive explanations [18]. They suggest to learn a Bayesian network
from abductive explanations using structure learning techniques. Once the net-
work structure is determined, the parameters of the network are learned using
an external training set.

There are only a few works in the literature for abductive reasoning in DLs.
However, unlike our approach, none of these works estimates probabilities for the
computed abductive explanations. For TBox abduction, Hubauer et al. proposed
automata-based approach [7] while Noia et al. proposed an approach exploiting
tableaux algorithms for DLs [15]. For ABox abduction, Perald et al. proposed
an approach based on a backward inference method [6]. It restricts axioms in
the DL-based ontology to some special forms and does not use a notion of min-
imality for abductive solutions. Klarman et al. have proposed an approach for
ABox abduction in ALC fragment of OWL DL [12], but this approach cannot
guarantee termination. Du et al. have propose another approach which is based
on translation of SHIQ into Prolog and making abductive reasoning using ex-
isting a approaches for plain datalog programs [4]. They have showed that their
guarantees termination and certain minimality of results. We have followed the
same approach to enumerate all abductive explanations for an ABox axiom.

8 Conclusions

In this paper, first we formalize probabilistic ABox abduction problem in DL.
Then, we have proposed an approach for estimating likelihoods of abductive
explanations. The proposed approach exploits the frequencies of justification
patterns in ABox within the context of specific individuals in a knowledge base.
Our evaluations show that the proposed approach significantly outperform clas-
sical abduction approach where each explanation is assumed equally likely. Our
findings also highlight that the probabilistic abduction in SHIQ is costly, as
expected. That is why, we have presented a tractable algorithm for DL-LiteR at
the end. As a future work, we plan to study the strength and weaknesses of the
proposed approach extensively using various benchmarks.

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider. The
Description Logic Handbook. Cambridge University Press, 2003.

2. D. Calvanese, D. Lembo, M. Lenzerini, and R. Rosati. Tractable reasoning and
efficient query answering in description logics: The dl-lite family. J. of Automated
Reasoning, pages 385–429, 2007.

3. H. Christiansen. Constraint handling rules. chapter Implementing Probabilistic
Abductive Logic Programming with Constraint Handling Rules, pages 85–118.
2008.

SSWS 2011

120

4. J. Du, G. Qi, Y.-D. Shen, and J. Z. Pan. Towards practical abox abduction in large
owl dl ontologies. In The Twenty-Fifth AAAI Conference on Artificial Intelligence
(AAAI-11), San Francisco, USA, August 2011.

5. C. Elsenbroich, O. Kutz, and U. Sattler. A case for abductive reasoning over
ontologies. In OWLED’06, pages –1–1, 2006.

6. S. Espinosa Perald, A. Kaya, S. Melzer, R. Moller, and M. Wessel. Towards
a media interpretation framework for the semantic web. In Proceedings of the
IEEE/WIC/ACM International Conference on Web Intelligence, WI ’07, pages
374–380, 2007.

7. T. Hubauer, S. Lamparter, and M. Pirker. Automata-based abduction for tractable
diagnosis. In Description Logics, 2010.

8. U. Hustadt, B. Motik, and U. Sattler. Reasoning in description logics by a reduction
to disjunctive datalog. J. Autom. Reason., 39:351–384, October 2007.

9. P. D. R. K. James Blythe, Jerry R. Hobbs and R. J. Mooney. Implementing
weighted abduction in markov logic. In International Conference on Computational
Semantics, 2011.

10. A. C. Kakas, B. Van Nuffelen, and M. Denecker. A-system: problem solving through
abduction. In Proceedings of the 17th international joint conference on Artificial
intelligence (IJCAI’01), pages 591–596, 2001.

11. A. Kalyanpur. Debugging and Repair of OWL-DL Ontologies. PhD thesis, Univer-
sity of Maryland, 2006.

12. S. Klarman, U. Endriss, and S. Schlobach. Abox abduction in the description logic
ALC. J. Autom. Reason., 46:43–80, 2011.

13. P. Mancarella, G. Terreni, F. Sadri, F. Toni, and U. Endriss. The CIFF proof pro-
cedure for abductive logic programming with constraints: Theory, implementation
and experiments. Theory Pract. Log. Program., 9:691–750.

14. B. Motik, R. Shearer, and I. Horrocks. Hypertableau Reasoning for Description
Logics. Journal of Artificial Intelligence Research, 36:165–228, 2009.

15. T. D. Noia, E. D. Sciascio, and F. M. Donini. A tableaux-based calculus for ab-
duction in expressive description logics: Preliminary results. In Description Logics,
2009.

16. C. Patel, J. J. Cimino, J. Dolby, A. Fokoue, A. Kalyanpur, A. Kershenbaum, L. Ma,
E. Schonberg, and K. Srinivas. Matching patient records to clinical trials using
ontologies. In ISWC/ASWC, pages 816–829, 2007.

17. D. Poole. Probabilistic horn abduction and bayesian networks. In Artificial Intel-
ligence, 1993.

18. S. Raghavan and R. Mooney. Bayesian abductive logic programs. In Proceedings
of the AAAI Workshop on Statistical Relational AI, pages 82–87, 2010.

19. E. Sirin, B. Cuenca Grau, and B. Parsia. From wine to water: Optimizing de-
scription logic reasoning for nominals. In Proceedings of KR-2006, pages 90–99,
2006.

20. E. Sirin and B. Parsia. Pellet: An owl dl reasoner. In Description Logics, 2004.
21. L. Sterling and L. U. Yalcinalp. Explaining prolog based expert systems using a

layered meta-interpreter. In Proceedings of the 11th international joint conference
on Artificial intelligence, pages 66–71, 1989.

22. E. Thomas, J. Z. Pan, and Y. Ren. TrOWL: Tractable OWL 2 Reasoning Infras-
tructure. In the Proc. of the Extended Semantic Web Conference (ESWC2010),
2010.

SSWS 2011

121

