
The Quad Economy of a Semantic Web
Ontology Repository

Manuel Salvadores, Paul R Alexander,
Mark A. Musen, and Natalya F. Noy

Stanford Center for Biomedical Informatics Research
Stanford University, US

{manuelso,palexander,musen,noy}@stanford.edu

Abstract. Quad stores have a number of features that make them
very attractive for Semantic Web applications. Quad stores use Named
Graphs to give contextual information to RDF graphs. Developers can
use these contexts to incorporate meta-data such as provenance and ver-
sioning. The OWL language specification provides the owl:imports con-
struct as one of the key ways to reuse the ontologies on the Semantic Web.
When one ontology imports another through the owl:imports statement,
all axioms from the imported ontology are brought to the source ontol-
ogy. When implementing an online ontology repository, we have explored
a number of different approaches to reflect these imports and contextual
information in a quad store. These approaches have a direct impact on
storage requirements, query articulation, and reusability.

This paper describes different models to represent contextual informa-
tion, ontology imports and versioning. We have performed the experi-
ments in the context of storing ontologies from the BioPortal ontology
repository. This repository has 304 ontologies, with multiple versions for
many of them. We extract metrics on the levels of imports, and the
storage and performance requirements and discuss the trade-offs among
query articulation, reusability and scalability.

Keywords: Ontology Repository, Scalability, Quad Stores, SPARQL

1 Introduction

Ontology repositories act as a gateway for users who need to find ontologies for
their applications. Research institutions and companies submit their ontologies
to these repositories in order to promote their vocabularies and to encourage
inter-operation. In biomedicine, cultural heritage, and other domains, many of
the ontologies and vocabularies are extremely large, with tens of thousands of
classes. For example, SNOMED CT, one of the key terminologies in biomedicine,
has almost 400,000 classes. The Gene Ontology (GO) has 34,000 classes. These
ontologies and terminologies are updated on a regular basis, some very frequently.
For example, a new version of the Gene Ontology is published daily.

SSWS 2011

14



In our laboratory, we have developed BioPortal, a community-based ontology
repository for biomedical ontologies [1].1 Users can publish their ontologies to
BioPortal, submit new versions, browse the ontologies, and access the ontolo-
gies and their components through a set of REST services. BioPortal provides
search across all ontologies in its collection, a repository of automatically and
manually generated mappings between classes in different ontologies, ontology
reviews, new term requests, and discussions generated by the ontology users in
the community.

At the time of this writing, BioPortal has 304 ontologies, with 5.3 million
classes among them. Many of these ontologies have multiple versions in the
repository. Many of the ontologies import one another or import ontologies that
are not in the BioPortal repository. Finally, the ontologies come in a number
of different formats, and thus are persisted in different backends using various
APIs. There is a single Lucene index of classes to enable search across ontologies
and the BioPortal REST API provides uniform access to all the ontologies in
the repository so that API users can be agnostic about the individual formats.
For each ontology, we provide access to the latest version of the ontology, and
partial access to the earlier versions.

We are currently working on creating a single database—a quad store—for all
the ontologies and their associated metadata. As part of the design, we evaluated
the cost, in terms of data size, of representing and materializing various aspects
of the ontologies, including the import structure of the ontologies. In this paper,
we report on our analysis and the trade-offs with respect to representing a set
of ontologies and their versions in a quad store.

Specifically, this paper makes the following contributions:

– We analyze the anatomy of a large-scale ontology repository with respect to
the frequency of updates and the structure of imports among the ontologies

– We compare the storage requirements for representing the ontologies and
their versions in a quad store, analyzing the effect of materializing imports.

2 Background

In this section, we provide background on the quad store technology, and its
relationship to the SPARQL query language. We discuss the use of these tech-
nologies to represent and query ontology metadata.

2.1 Quad Stores, Named-Graphs and RDF

The Resource Description Framework (RDF)2 is the core standard for repre-
senting data on the Semantic Web. The Semantic Web community is promoting
RDF stores (or triple stores) as the key data storage technology. In an RDF
store, data are not bound to a schema. Furthermore, we can assert data into an

1 http://bioportal.bioontology.org
2 http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/

SSWS 2011

15



RDF store directly from RDF sources where it is represented in native Semantic
Web formats (e. g. RDF/XML or Turtle files). SPARQL is a query language de-
signed to express queries for data viewed or stored as RDF. SPARQL introduces
the notion of Named Graphs [4, 5] to represent and encapsulate distinct RDF
Datasets.3

The notion of Named Graphs gave rise to the development of quad stores. A
quad, unlike a triple, has a fourth component that often is referred as “named-
graph,” “context” or “model.” In this paper, for the sake of consistency, we will
always refer to the fourth component as named-graph. Today, there are numer-
ous RDF databases that in essence are quad stores due to their native support
for named-graphs. Examples of these systems include 4store [8], Virtuoso [7],
Jena TDB [11] and Sesame [3]. These tools, and many others, have adopted
SPARQL as the language to query RDF graphs. SPARQL 1.0 defines a standard
mechanism for querying named-graphs. This type of query can be achieved with
either FROM NAMED or GRAPH clauses. There are two widely accepted formats to
represent named-graphs in RDF: N-Quads [6] and TriG [2]. Most quad stores
are compatible with these two formats. However, neither of these formats is an
RDF standard. Indeed, graph identification in RDF was listed as one of the
core working items in the RDF Next Steps Workshop and, possibly, it will be
standardized as part of the next RDF specification.4

2.2 Metadata, Versioning, Named-Graphs and SPARQL

Named graphs can be used in two ways. First, we can use them to represent
statements about the same resource that were made in a different context. Each
named graph contains statements that were made in a specific context (e.g., by
a particular information source). Second, we can use named graphs to collect
metadata and attach it to a document, in our case to attach metadata to an
ontology.

BioPortal keeps several versions of each ontology. For each version, it holds
metadata about its content, authorship, creation and modification dates, projects,
categories, and so on. It is important that our backend infrastructure enables us
to combine queries that filter information based on the metadata about both the
ontologies and the content of the ontologies themselves. Quad store technology
is the clear option to implement this kind of capability.

In quad stores, IRIs are used to identify graphs such that other statements
can “say” things about graphs. This auto-referenceable mechanism allows us to
incorporate metadata. As an example, the quads below—in TriG format—show
how we can say things about a graph. In this example, we use the IRI GraphX
to identify the named-graph that holds the ontology containing the term “Aro-
matic Amino Acids.” Similarly, GraphXMetadata is the IRI where triples that
say things about GraphX are held. This is just a simple example and is not nec-
essarily the model that we will use to represent metadata for ontologies.

3 http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/#rdfDataset
4 http://www.w3.org/2011/rdf-wg/wiki/TF-Graphs

SSWS 2011

16



:GraphX {

:AromaticAminoAcid rdf:type owl:Class;

rdfs:subClassOf :SpecificAminoAcid, :AminoAcid;

rdfs:label "Aromatic Amino Acid" .

(... some other ontological axioms in RDF/Turtle ...) }

:GraphXMetadata {

:GraphX rdf:type owl:Ontology;

dct:created "2001-09-01"^^xsd:date;

rdfs:label "Amino Acid";

dct:format "OWL";

foaf:primaryTopic <http://bioportal.bioontology.org/ontologies/1054>;

(... some other metadata statements ...) }

This technique has become very popular for RDF graph versioning. We could
state things such as X is replaced by Y or that Z is a version of T. The data.gov.uk
project uses a similar versioning model using named graphs [14].

As you can see, named-graphs are first-class objects in a quad store and
the IRIs used to identify graphs become part of the global graph and can thus
be retrieved with SPARQL queries. The SPARQL 1.0 specification defines two
query clauses to filter and/or bind specific named-graphs. These clauses are FROM
NAMED and GRAPH. For instance, with the following query, we would retrieve
all the ontologies ?ont where a triple has a binding on subject or object to
:SpecificAminoAcid. The query also selects the predicates ?p that match such
bindings.

SELECT DISTINCT ?ont ?p WHERE {

GRAPH ?g {

{ ?x ?p :SpecificAminoAcid . }

UNION

{ :SpecificAminoAcid ?p ?x . }

}

?g rdf:type owl:Ontology .

}

The GRAPH clause can be used both with query variables or constant IRIs
depending on whether or not we need to match a specific named-graph or just
filter out named-graphs that do not satisfy other conditions. FROM NAMED is used
only to declare a set of graph IRIs where a set of triple patterns is going to be
satisfied. Combining GRAPH and FROM NAMED is possible, and we can constrain
queries to a set of graphs and still identify the graph which is the source of
information.

As an example, the following query is applied over an RDF dataset that
contains one default graph and two named graphs. Moreover, in the WHERE clause
we obtain the graph where things of type :SpecificAminoAcid are bound. This
query reflects the case where we can combine queries that retrieve both metadata
and data about the ontologies.

SSWS 2011

17



SELECT ?g ?label_g ?s ?label_s

FROM :GraphMetadata

FROM NAMED :GraphX

FROM NAMED :GraphY

WHERE {

GRAPH ?g {

?s rdf:type :SpecificAminoAcid .

?s rdfs:label ?label_s .

}

?g rdfs:label ?label_g .

}

The next section describes BioPortal’s architecture, its limitations and some
reasons to motivate the replacement of the current backend technology with a
more scalable solution.

3 Motivation

Two different motifs drive this research:

1. Scalability: The BioPortal backend interacts with several databases and APIs
(Section 3.1). This variety of non-compatible sources makes it extremely hard
to implement a uniform query interface across ontologies.

2. Provenance and Versioning: Currently, BioPortal treats every ontology as
a whole, including the materialization of all the owl:imports. With this
approach, it is very difficult to track provenance and to keep several versions
of ontologies at the term/class level.

3.1 BioPortal Architecture

BioPortal is an open library of biomedical ontologies that may be accessed using
a Web-based user interface or RESTful Web services.5 The Web-based user in-
terface allows users to browse, search, and visualize ontologies and also facilitates
community participation in the ontology lifecycle, including providing reviews
of ontologies, mappings between terms, comments, and new term proposals.

This Web-based user interface is driven by a variety of RESTful services,
including services that expose information about terms in ontologies, mappings,
notes, and metadata about the ontologies themselves. This metadata includes the
information on who uploaded each ontology into the system, which authorities
support it, the size of the ontology, and other information that is specific to
BioPortal. These RESTful services are accessed using standard HTTP verbs
(POST, GET, PUT, DELETE) that are roughly equivalent to create, retrieve,
update, and delete operations.

Users of these services are able to access all the ontology formats using a
standard XML output, which is one of the major advantages of using BioPortal

5 http://bioportal.bioontology.org

SSWS 2011

18



LexEVS 5.1 
Repository

Protégé 3.4
with Database 

Backend

MySQL
accessed via 

Hibernate
Virtuoso

Protégé 4.1
with Database 

Backend

Ontology Terms 
& Hierarchy

Lucene

Ontology Notes Ontology Term 
Mappings

REST Endpoints
XML

Ontology 
Metadata

Security

BioPortal Web User Interface
Ruby on Rails

Collaborating Projects
i2b2, ODIE, BIRN, etc

Outside Users
Java, Python, Perl, or other 

applications

Ontology SearchSubscriptions

Fig. 1. BioPortal Architecture

over other systems that provide access to ontological content. Unfortunately, sup-
porting the variety of ontology formats and related artifacts (mappings, notes,
metadata) adds several layers of complexity over a traditional RDBMS solution.

In order to support multiple ontology formats, BioPortal currently utilizes
two applications, LexEVS and Protégé. LexEVS is responsible for parsing and
storing terminologies in formats that are primarily used in the biomedical do-
main: OBO Format and Rich Release Format (RRF). Protégé handles OWL,
OWL2, and Protégé Frames (Figure 1). The systems use two entirely different
models for storing information: Protégé relies on a RDBMS solution; LexEVS
uses a combination of RDBMS and file-based storage.

In addition to ontology content, we also track a set of metadata related to
each ontology in the system. We represent the metadata using an OWL ontology
that we developed for this purpose, the BioPortal Metadata Ontology [10]. The
metadata itself are a set of instances in this OWL ontology. Thus, we ultimately
use the Protégé database backend as a store for metadata information. Protégé
provides a flexible model for working with data and is well-suited for integrating
and extending existing ontologies, such as the Ontology Metadata Vocabulary
(OMV) [12]. Unfortunately, Protégé lacks some functionality that is generally
accepted as standard on quad storage platforms, including the ability to query
easily across records in different ontologies and scalability into the tens-of-million
triples range.

Therefore, as you can see in Figure 1, there is no single uniform storage for the
ontologies or their metadata. We implement this uniform layer through an API.

SSWS 2011

19



However, as the amount of information in BioPortal grew, we faced scalability
issues with this approach.

We needed to represent 4.5 million term mappings between terms in Bio-
Portal ontologies. Each mapping connects two terms from different ontologies,
source and target. Each mapping also has several metadata properties associated
with it. Protégé was not scalable enough for this dataset and thus we decided
to represent the mappings in a quad store. Quad stores provided us with the
same kind of flexibility that Protégé offers with the added ability to scale easily
to support millions of triples and to provide opportunities for members of the
Semantic Web community to query our data using a SPARQL endpoint.

However, using a quad store only for mappings turned out to have its own
scalability problems: The triples that represent mappings are completely isolated
from the storage of the ontologies themselves in Protégé and LexEVS. The map-
ping triples had only the URIs for the source and target terms. Thus, if the user
needed labels, or any other information about these terms, a single query in the
system that generated a result set with ten mappings needs at least 20 queries
in order to correlate information about related terms. The BioPortal Web-based
user interface shows 100 mappings on each page, and therefore at least 200 calls
to the RESTful services are required to retrieve term information for a single
page. While we do cache results, the experience can be less than ideal for users.

The same type of issues arise when examining systems for providing ontology
notes, provisional terms, or any information about ontology content that isn’t
restricted to a single ontology, such as a query that looks for terms that share an
ID across all ontologies. We implemented a Lucene-based index to overcome some
of these issues, which will remain an integral part of the BioPortal architecture
due to its speed in performing free-text searches. However, we clearly need a
more comprehensive, scalable, and uniform solution.

Moreover, it is worth mentioning that both BioPortal’s UI and REST API
have been growing in traffic over the last three years. The number of page views
has quadrupled between Q2 2009 and Q1 2011 (see Figure 2, top chart). Fur-
thermore, BioPortal users proved to be very loyal and use the service frequently.
Almost 45% of them visit the site at least 15 times per month and 18% return
to the site 50 times or more (see Figure 2, bottom chart). The use of the REST
services has experienced outstanding growth in 2011. The average number of hits
per month grew from 3M hits in 2010 to 122M hits in 2011. 6 Our commitment
to serve this growing demand is one of the primary motivations to undertake the
project of migrating towards a more scalable infrastructure.

6 We consider the average hits per month in order to be able to compare 12 months
from 2010 versus 7 months in 2011.

SSWS 2011

20



Fig. 2. BioPortal UI Traffic (per quarter, excluding Stanford) (top) and Returning
visitors (bottom)

3.2 BioPortal Ontologies

At the time of this writing, there are 284 ontologies in BioPortal. As we men-
tioned in Section 3.1, the BioPortal ontology repository supports various ontol-
ogy formats. Table 3 shows the number of ontologies per format. You can see
that 90% of the ontologies are either in OBO or OWL formats. Of that 90%,
59% are in OWL and 41% in OBO.

OBO has been the format used for many of biomedical ontologies. Recently,
however, there has been a shift and today OWL is the most popular format. This
shift is due to the standardization of OWL and the rise of standard tools such as
reasoners, query engines and editors. Moreover, there are tools that allow us to
transform OBO ontologies into OWL—such as the OWL API [9]—and therefore
use RDF serializations to store OBO ontologies in a RDF database. This study
covers both OBO and OWL; we leave the rest of the formats for future analyses.

In BioPortal, the metadata associated with each ontology follows the BioPor-
tal Metadata Ontology.7 This ontology is used to declare projects, authorship,

7 http://www.bioontology.org/wiki/index.php/BioPortal_Metadata

SSWS 2011

21



Table 1. Ontology Format Occurrences in BioPortal

Format N. Ontologies

OWL 149

OBO 105

RRF 27

PROTEGE 2

UMLS-RELA 1

categories, coding schemes, users, etc. The details of classes and properties in
this ontology are not relevant for this analysis; we will only look into the overall
number of triples that we require for an ontology version. The average size of the
metadata graph for the 284 ontologies is 38 triples without significant variability
(94% of the ontologies are in the range [34,42]). In BioPortal, practically all the
metadata are attached to an ontology version. Users can modify nearly every
piece of metadata every time they submit a new ontology version. Thus, we will
associate the cost of metadata triples to ontology versions rather than to the
general concept of ontology.

There are large ontologies, such as the Gene Ontology (GO) with 73K terms
in 738K triples, that get updated every day.8 All of the versions of the Gene
Ontology would expand to more than 350M triples. Today, we are not able to
provide all the repository functions for every ontology version. Only ontology
download is available for old versions. Capabilities such as term search and
hierarchy visualization are accessible only for the latest version of each ontology.

For versioning, BioPortal deprecates ontologies using the Apple’s “Time Ma-
chine” algorithm: keep all versions for the last 7 days; keep one most recent
version per week for the last 30 days; keep one most recent version per 30 days
from the beginning.9 This logic applies only to ontologies automatically imported
from remote locations. BioPortal keeps all manually submitted versions, because
the number of versions of this kind is small.

Currently, BioPortal treats every ontology as a whole, including the mate-
rialization of all the owl:imports. Thus, if a small ontology imports a large
one then the former becomes a large ontology. If we take into account that this
problem gets reproduced for every version of that small ontology then we can
end up with a very inefficient model that contains millions of duplicated items.
Moreover, this model makes it very difficult to retrieve term provenance since
many terms are duplicated in graphs where they do not originally belong.

Our hypothesis was that we could optimise the number of quads in the system
by using a more granular model where owl:imports are not materialized and
every ontology graph only contains its own RDF triples without the triples from
the owl:imports ontologies. This type of granular model would economize the
number of triples in our data store and, at the same time, enable provenance

8 http://bioportal.bioontology.org/ontologies/1070
9 http://en.wikipedia.org/wiki/Time_Machine_(Mac_OS)

SSWS 2011

22



retrieval. Figure 3 shows the difference between an import-materialized model
versus an ontology-per-graph model.10

Fig. 3. Models: Per Graph Model vs Materialization of owl:imports

The upper part of Figure 3 depicts the import structure maintained by using
named-graphs. The bottom part shows how ontologies are incorporated into
other ontologies and how this model provokes a redundancy explosion. In order
to see quantitatively the level of quad storage space optimisation that we can
gain with an ontology-per-graph model we need to analyse the occurrences of
owl:imports in the BioPortal repository.

In the next section, we analyse the size of BioPortal’s data store in triples
and the distribution of owl:imports in OWL ontologies.

4 Quad Economic Analysis

We estimate the cost, in number of quads, of asserting all the OWL ontologies
into a quad store. We also look at the scalability numbers in case that maintain-
ing all versions of each ontology becomes a requirement.

OWL and OBO formats use different mechanisms for import. In order to
incorporate ontologies in the OBO format into the import analysis we need to
study further the compatibility of OBO imports with OWL imports. Thus, the
numbers presented in Figures 4, 5 and 6 include only statistics about imports
for ontologies in OWL format.

10 Import-materialized and ontology-per-graph are key terms and we shall refer to them
in following sections.

SSWS 2011

23



Fig. 4. Number of Imports per Ontology. Absolute numbers at the top, percentages at
the bottom.

One of the questions to be answered is the optimisation ratio—in num-
ber of triples—when using an ontology-per-graph model rather than a closure-
materialized model (see Section 2). This question is closely related to the number
of owl:imports in our catalog. The owl:imports distribution gives us a mech-
anism to understand the level of reusability in the data store.

There are 299 ontologies in the import closure of the 149 OWL ontologies in
BioPortal (i.e., if we follow all the owl:imports links from the 149 ontologies,
we will create a set of 299 ontologies). These 299 OWL ontologies contain 303
owl:imports, the materialized import closure is a set of 495 owl:imports. Not
all these 299 ontologies reside in BioPortal as first class citizens. Many of them
are just pushed in the system as consequence of an owl:import. We do not have
metadata for these ontologies. These ontologies could include FOAF or SKOS
which are imported by several other ontologies but are not necessarily biomedical
ontologies and thus they have not been submitted directly to BioPortal. From
the 299 OWL ontologies in the study 165 are ontologies registered in BioPortal.

Figure 4 presents absolute numbers (top chart) and the percentages (bottom
chart) of ontologies that have none, one, two or more than two imports. These
numbers—from Figure 4—are not really conclusive by themselves, even though
we can identify some tendencies. In order to extract conclusions, we also need

SSWS 2011

24



Fig. 5. Closure-Materialized Number of Triples Sum per Number of Imports. Number
of imports on X Axis and number of triples on Y Axis

to know the ratio of reused triples. Figure 5 shows the distribution of number
of triples, closure materialized, per number of imports. Ontologies that have no
imports gather 5.4M triples in the system; ontologies with just one import 1.7M;
none of the categories with imports from 2 to 9 reach 0.5M triples. For ontologies
with more than 10 imports there is tendency change with a peak of 2.1M triples
generated.

Fig. 6. Closure-Materialized Number of Triples Sum per Number of Imports Grouped.
Number of imports on X Axis and number of triples on Y Axis.

Figure 6 groups the data presented in Figure 5 into two different charts. The
left-hand side groups the number of triples into three categories: (a) no imports,
(b) more than 1 and less than 10 and (c) more than 10. The right-hand side shows

SSWS 2011

25



the same number grouped in two categories, the ones with imports and the ones
without. These two graphs are used in Section 5 for qualitative discussion.

In addition to the previous statistics we also measured various indicators per
ontology. Table 2 shows the number of triples without materialized imports (T.
Without C.), number with materialized imports (T. With C.), number of imports
in closure (N. Import C), depth of tree closure (Depth TI), triples import ratio
(I Ratio) and number of versions (NV). For practical reasons we only show a few
records in Table 2, but it is worth mentioning that similar numbers have been
collected for the 299 OWL ontologies. Note that the last column “NV - Number
of Versions” only applies to BioPortal ontologies and not to ontologies fetched
from the Web as part of an import. To calculate the ontology import ratio we
simply calculate the percentage of triples brought via owl:imports against the
ones held directly in the ontology, such that:
import ratio = 1 − (T. Without C./T. With C.)

Table 2. Statistical Indicators Sample - Ontologies with more than 10 imports.

Ontology T. Without C. T. With C N. Import C Depth TI I Ratio NV

NIF.owl 6 1,795,951 58 4 99.9% 9

sopharm.owl 1,317 359,087 24 4 99.6% 4

vo.owl 40,804 45,557 16 2 10.2% 92

aero.owl 698 3,981 14 2 82% 8

OntoDM.owl 4,685 8,240 11 4 43% 1

ddi.owl 2,388 5,347 10 2 55% 1

Table 3. Number of Triples and Versions for OBO and OWL Ontologies

I. Not Mat. I. Mat. N. Versions All V. Not Mat. All V. Mat.

OWL 9.75M 14.65M 817 41.2M 65.6M

OBO N/A 5.9M 3,022 N/A 593M

TOTAL N/A 20.55M 3,839 N/A 658.5M

The last indicative figures are shown in Table 3. This table includes:

– Number of triples without materialized imports (I. Not Mat.).
– Number of triples with materialized imports (I. Mat.).
– Number of versions (N. Versions).
– Number of triples for all the versions of all the ontologies without material-

ized imports (All V. Not Mat.).
– Number of triples for all the versions of all the ontologies import materialized

(All V. Not Mat.).

After having presented several important aspects related to the data size in
triples and the owl:imports distribution, we shall discuss how they impact the
design and scalability of our quad storage in the next section.

SSWS 2011

26



5 Discussion

Our initial hypothesis was to assume that we could optimise the number of
quads in the system by using a more granular model where we do not materi-
alize owl:imports and every ontology graph only contains its own RDF triples
without bringing the triples from the owl:imports ontologies. In that sense, for
the 165 biomedical ontologies in OWL, Figure 4 shows a steep tail distribution
where 59% of the ontologies do not make use of owl:imports at all. Therefore,
they do not reuse any terms from other ontologies. The rest of the ontologies
(40.6%) use imports but the majority of them (27.27%) contain a small number
of imports, 5 imported ontologies or less. Ontologies with high levels of imports
are rare in our catalog, just 3.03% have more than 10 imports and from those
only 1.21% have more than 20. These figures let us conclude that the levels of
reusability in OWL ontologies for the biomedical domain is low. We do not try to
explain why this situation happens, but, arguably, the experts in the biomedical
domain have adopted ontologies earlier than many others [13]; if do not often
practice ontology reuse, works in other domains have an even longer way to go.

Next, we look more closely at what type of ontologies reuse other ontologies,
in order to determine the effects in terms of storage requirements. Because most
ontologies are self contained and they do not reuse other ontologies, even in the
model where we do not materialize imports, not many ontology graphs will refer
to other ontology graphs. However, if the 303 owl:imports are placed in the
right place, then the ontology-per-graph model would optimize the dataset size.
In an ontology-per-graph model, the ideal situation is to have the majority of
the imports in the larger and most frequently updated ontologies. The rationale
behind this conclusion is that, not all modules in a new version of an ontology
would change. In those cases we only need to assert a new version for the updated
modules and modify the metadata. Thus, we look at the relationship between
ontology sizes, number of imports and update frequency.

Figures 5 and 6 give us the relationship between ontology size, in number
of triples, and the level of modularity, in number of imports. Contrary to what
one might expect, the larger the ontology, the fewer imports it has. In other
words, larger ontologies that could benefit more from modularity actually are
not modular in practice. The exception is the peak for “> 10” category in Figure
5, which has 2.1M triples. This peak is caused by two very modular ontologies
that are also large, NIF and sopharm, with 58 and 24 imports respectively; and
1.7M and 300.5K triples respectively (see Table 2). However, ontologies like these
are an exception. Within the 14 largest ontologies in our collection, all of them
with more than 100K triples, NIF and sopharm are the only ontologies with more
than 2 imports and with more than 10% of reused import ratio. Thus, we can
conclude that the size of the ontology is not directly related to the number of
imports.

Next, we look at the absolute numbers for ontology sizes (Table 3). We can
calculate the percentage of saved triples for the latest ontology versions if we
materialize the imports, 1− (I. Not Mat./I. Mat.). The percentage obtained is
33.4% for the last snapshot and, for all versions, it goes up to 37.2%. These per-

SSWS 2011

27



centages show that, even though the level of re-usability in the OWL ontologies
is very low, we can still save more than one third of the storage by moving to an
ontology-per-graph model. Moreover, that model also provides the requirements
to track provenance and implement versioning.

One of the columns in Table 3 also shows the size of the OBO ontologies, but
only for the import-materialized case. The last snapshot of the OBO ontologies
contains 5.9M triples. However, historically BioPortal has a larger number of
versions (3,022) for OBO ontologies than for OWL because they get updated
more frequently and also because OBO was the predominant format in the past.
This large number of versions makes the total number of triples to be 593M. We
hope that, once OBO ontologies use a more explicit import mechanism or their
developers switch to OWL, we will be able to save on the storage at a ratio that
is similar to the one that we observed for OWL Ontologies.

One of the motivations to maintain an import-materialized model is to fa-
cilitate SPARQL query construction. There will be cases in which we need to
run queries on a set of ontologies —and not over the global graph. In an import-
materialized model, one ontology is reflected by one graph only, and thus queries
targeting specific ontologies are easy to write. In a ontology-per-graph model,
one ontology is reflected by a closure of tree imports, which can potentially com-
plicate the query construction. It is possible to argue that, depending on the
complexity of the owl:imports network, it might not be feasible to construct
queries with hundreds or thousands of GRAPH or FROM NAMED clauses. You could
even argue that for a very large owl:imports network the size of the SPARQL
query string could become problematic. Even though all these arguments are
based on solid foundations, they would not be valid for BioPortal’s case. The
statistics collected in Section 4 show that:

1. 59% of the ontologies would be reflected by just one graph, because they do
not have imports.

2. The largest import closure contains 58 items, which is far from being the
potential cause of a problem. 58 graph clauses to construct an RDF data set
should not be a problem for any of the quad stores listed in Section 2.

3. The maximum depth of the import tree is 4 levels, and thus calculating the
import closure will never steal many computational cycles. Moreover, the
number of imports in the system makes it feasible to pre-cache all of them
at the application level. With this approach, the application would not have
to go back and forth to the SPARQL endpoint in order to calculate the
closures.

To conclude, our analysis shows that, on the one hand, ontology reuse is still
far from being the norm, but, on the other, effective reuse is a goal worth pur-
suing: as ontologies become larger in size, the level of reuse can have significant
implications for the scalability of the ontology storage systems.

SSWS 2011

28



6 Acknowledgments

This work was supported by the National Center for Biomedical Ontology, under
grant U54 HG004028 from the National Institutes of Health.

References

1. Noy, N.F., Shah, N., Dai, B., Dorf, M., Griffith, N., Jonquet, C., Montegut, M.,
Rubin, D.L., Youn, C., Musen, M.A.: Bioportal: A Web Repository for Biomed-
ical Ontologies and Data Resources. In: International Semantic Web Conference
(Posters & Demos) (2008)

2. Bizer, C., Cyganiak, R.: The Trig Syntax. Tech. rep., FU Berlin (7 2007), http:
//www.wiwiss.fu-berlin.de/suhl/bizer/TriG/Spec/TriG-20070730/

3. Broekstra, J., Kampman, A., Harmelen, F.V.: Sesame: A Generic Architecture for
Storing and Querying RDF and RDFS. pp. 54–68. Springer (2002)

4. Carroll, J.J., Bizer, C., Hayes, P.J., Stickler, P.: Named Graphs, Provenance and
trust. In: WWW. pp. 613–622 (2005)

5. Chein, M., Mugnier, M., Simonet, G.: Nested Graphs: A Graph-Based Knowl-
edge Representation Model with FOL Semantics. In: Proceedings of the 6th Inter-
national Conference on Knowledge Representation (KR’98. pp. 524–534. Morgan
Kaufmann (1998)

6. Cyganiak, R., Harth, A., Hogan, A.: N-Quads: Extending N-Triples with Context.
Tech. rep. (2008), http://sw.deri.org/2008/07/n-quads/

7. Erling, O., Mikhailov, I.: RDF Support in the Virtuoso DBMS. In: CSSW. pp.
59–68 (2007)

8. Harris, S., Lamb, N., Shadbolt, N.: 4store: The Design and Implementation of
a Clustered RDF Store. In: Scalable Semantic Web Knowledge Base Systems -
SSWS2009. pp. (p. 94–109) (2009)

9. Horridge, M., Bechhofer, S.: The OWL API: A Java API for OWL Ontologies.
Semantic Web 2(1), 11–21 (2011)

10. Noy, N.F., Dorf, M., Griffith, N., Nyulas, C., Musen, M.A.: Harnessing the Power of
the Community in a Library of Biomedical Ontologies. In: Workshop on Semantic
Web Applications in Scientific Discourse at the 8th International Semantic Web
Conference (ISWC 2009). Chantilly, VA (2009)

11. Owens, A., Seaborne, A., Gibbins, N., schraefel, mc: Clustered TDB: A clustered
triple store for jena (November 2008), http://eprints.ecs.soton.ac.uk/16974/

12. Palma, R., Hartmann, J., Haase, P.: OMV: Ontology Metadata Vocabulary for the
Semantic Web. Tech. rep., http://ontoware.org/projects/omv/ (2008)

13. Rubin, D.L., Shah, N.H., Noy, N.F.: Biomedical Ontologies: a Functional Perspec-
tive. Briefings in Bioinformatics 9(1), 75–90 (2008)

14. Sheridan, J., Tennison, J.: Linking UK Government Data, pp. 1–4. ACM Press
(2010), http://events.linkeddata.org/ldow2010/papers/ldow2010_paper14.

pdf

SSWS 2011

29




