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Preface

This volume contains the papers presented at 7th International Workshop on
Scalable Semantic Web Knowledge Base Systems (SSWS 2011) held on October
23, 2011 in Bonn, Germany.

SSWS 2011 was the seventh instance in the sequence of successful Scalable
Semantic Web Knowledge Base Systems workshops. This workshop focused on
addressing scalability issues with respect to the development and deployment
of knowledge base systems on the Semantic Web. Typically, such systems deal
with information described in Semantic Web languages like OWL and RDF(S),
and provide services such as storing, reasoning, querying and debugging. There
are two basic requirements for these systems. First, they have to satisfy the
applications semantic requirements by providing sufficient reasoning support.
Second, they must scale well in order to be of practical use. Given the sheer
size and distributed nature of the Semantic Web, these requirements impose
additional challenges beyond those addressed by earlier knowledge base systems.
This workshop brought together researchers and practitioners to share their
ideas regarding building and evaluating scalable knowledge base systems for the
Semantic Web.

This year we received 13 submissions. Each paper was carefully evaluated by
two or three workshop Program Committee members. Based on these reviews,
we accepted ten papers for presentation. The topics of the selected papers span
the areas of large scale data stores, optimized representation mechanisms, and
query processing. We sincerely thank the authors for all the submissions and are
grateful for the excellent work by the Program Committee members.

September 2011 Achille Fokuoe
Thorsten Liebig

Yuanbo Guo
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RDF Literal Data Types in Practice

Ian Emmons, Suzanne Collier, Mounika Garlapati, and Mike Dean

Raytheon BBN Technologies, Inc., Arlington, VA 22209, USA
{iemmons,scollier,mgarlapa,mdean}@bbn.com

Abstract. One of the more mysterious aspects of RDF (Resource De-
scription Framework) is typed literals. For instance, confusion over the
difference between a plain character string (“foo”) and a string that is ex-
plicitly typed (“foo”ˆˆxsd:string) is common. Also, questions often arise
about comparisons between literals of the various numeric types (e.g.,
long, integer, decimal, and float). This paper explores how several pop-
ular triple stores handle literals via direct testing, and also compares
their behavior to the relevant standards. Along the way, we highlight a
number of implementation inconsistencies and some surprising aspects
of the standards themselves.

1 Introduction

One of the more mysterious aspects of RDF (Resource Description Frame-
work) [14] is typed literals. For instance, new and even moderately expe-
rienced Semantic Web practitioners often ask questions like these:

– What is the difference between a plain character string (“foo”) and a
string that is explicitly typed (“foo”ˆˆxsd:string)?

– Under what conditions can literals of the various numeric types (long,
integer, decimal, float, etc.) be compared?

– Can literals with different lexical forms but the same value, such as
“47”ˆˆxsd:decimal and “47.0”ˆˆxsd:decimal, be compared?

While using our own Parliament triple store [1], we have wrestled with
these questions from time to time, and so decided to investigate this topic
thoroughly. In particular, we wanted to understand how other triple stores
implement literal data types, and compare this against both our own im-
plementation and the standards themselves. We give a summary of the
relevant portions of the standards in Section 2, and then present our em-
pirical results in Section 3. Along the way, we highlight a number of im-
plementation inconsistencies and some surprising aspects of the standards
themselves.
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2 Literal Data Types in the Standards

All literals in RDF have a lexical form encoded as a Unicode string, and
are either typed or plain [14]. A plain literal is a lexical form with an
optional language tag (“foo” or “foo”@en), whereas a typed literal is a
lexical form together with a data type URI (“foo”ˆˆxsd:string). A data
type defines a value space, the set of possible values, and a lexical space,
the set of valid lexical forms, for literals of that type. RDF defines a set of
data types by borrowing from the XSD specification [3], and most typed
literals use one of these data types. Figure 1 shows the complete XSD
type hierarchy. RDF defines one other data type, rdf:XMLLiteral, and
also allows user-defined data types.

In addition, some RDF serializations such as Turtle [2] allow unquoted
literal forms. In reality, these are not separate kinds of literals, but syn-
tactic shortcuts for certain typed literals. For instance:

– An unquoted 3 is a shortcut for “3”ˆˆxsd:integer
– An unquoted 3.14 is a shortcut for “3.14”ˆˆxsd:decimal
– An unquoted true is a shortcut for “true”ˆˆxsd:boolean

Because SPARQL syntax is based on Turtle, these shortcuts are valid
within SPARQL queries [20].

In the absence of entailment, RDF and OWL maintain that literals
are only equal when both their lexical form and data type are equivalent.
The RDF specification states that two literals are equal if and only if all
of the following conditions hold [14]:

– The two lexical forms compare equal, character by character
– Either both or neither have language tags
– The language tags, if any, compare equal
– Either both or neither have data type URIs
– The two data type URIs, if any, compare equal, character by character

This means that any two typed literals must have exactly the same
lexical form and data type URIs to be considered equal. OWL follows
similar equality rules, declaring “Two literals are structurally equivalent
if and only if both the lexical form and the data type are structurally
equivalent; that is, literals denoting the same data value are structurally
different if either their lexical form or the data type is different.” [15]

Although these are the strict rules of literal equality, by applying the
RDF D-Entailment regime to XSD data types, the equality rules become
more flexible [11]. Note that this entailment regime applies only to XSD
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Fig. 1. Type Hierarchy of XSD Data Types [3]
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data types, and adds nothing to comparisons of literals with language tags.
Thus this paper will not discuss language-tagged literals any further. XML
schema data types are defined in a hierarchical structure, with base types
and derived types (see Figure 1). An XML schema derived type refers
to a subset of the value space of its base type. Therefore, two literals
that have the same primitive base data type and the same lexical forms
are equal [3]. For example, because both int and byte are derived from
decimal, “25”ˆˆxsd:byte is equivalent to “25”ˆˆxsd:int. Additionally, RDF
Semantics explicitly equates plain literals (“foo”) and literals of type string
(“foo”ˆˆxsd:string):

The value space and lexical-to-value mapping of the XSD data type
xsd:string sanctions the identification of typed literals with plain
literals without language tags for all character strings which are in
the lexical space of the data type, since both of them denote the
Unicode character string which is displayed in the literal [11].

The D-entailment regime also states that if two lexical forms map
to the same value and have the same data type, then they entail each
other [11]. For example, “14”ˆˆxsd:decimal and “14.0”ˆˆxsd:decimal are
lexicographically different; however, because 14 and 14.0 map to the same
value, these two literals are equivalent under this entailment rule.

Within SPARQL Filter clauses, additional type promotion rules apply,
since the functions and operators are defined by the XML Query Language
(XQuery) Operator Mapping. XQuery performs type promotion and sub-
type substitution as necessary in order to compare the values of operands
separately from the data types [4]. The outcome (as seen in Section 3.3)
is potentially different results for the following two SPARQL queries:

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?x WHERE {

?x ?y "47"^^xsd:decimal .

}

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?x WHERE {

?x ?y ?z .

FILTER( ?z = "47"^^xsd:decimal )

}

There is considerable opportunity for confusion here: We found that
even Raytheon BBN’s most experienced Semantic Web practitioners were
surprised to learn that these queries are not equivalent.
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Implementations of the recommendations are not required to support
D-Entailment on XSD data types, but it is helpful. D-Entailment helps
to reduce the unintended effects of syntactic choices made by authors,
and makes data more interoperable. For instance, authors may choose to
represent 12 as a decimal instead of an integer. However, when another
user queries for “12”ˆˆxsd:integer they would expect to find a match. Of
the triple stores that we studied, Jena most strictly followed the RDF
D-Entailment regime on XSD data types. AllegroGraph chose to only
follow the string entailment rules, equating “foo” with “foo”ˆˆxsd:string,
but not allowing equivalence between different numeric types. Parliament,
AllegroGraph, and Jena TDB follow strict literal equality. All of the triple
stores we tested follow the SPARQL filter clause type promotion rules.

3 Existing Practice

An analysis of literal data types in relation to triple stores is important
because most triple stores lack documentation on their storage and treat-
ment of literals. Some users may expect triple stores to treat various literal
forms (for example “foo”ˆˆxsd:string versus “foo” or “3.14”ˆˆxsd:decimal
versus “3.14”ˆˆxsd:float) as equivalent values. However, triple stores vary
in their implementation. To analyze the relationship between literals and
triple stores, we stored various literal representations in several different
triple stores, and then queried for them to see what combinations of lit-
erals each triple store would match.

3.1 Methodology

In order to assess how triple stores handle a diverse set of literals, we
created a test harness to drive each of several triple stores through a series
of tests and compile the results. The particular triple stores we selected
for testing are discussed in Section 3.2, and the results of our testing are
discussed in Section 3.3. The harness stores a set of literal statements in
a triple store and then runs a series of queries to assess which pairs of
literal forms that triple store can match. Our test harness code and a
spreadsheet containing our results can be found on our web site, here:

http://asio.bbn.com/2011/10/ssws/LiteralDataTypes.zip

To begin, the test harness reads RDF from an input file that contains
a consistent selection of typed, untyped, and irregular literals. (By “irregu-
lar”, we mean typed literals whose lexical form are inconsistent with their
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type, such as “foo”ˆˆxsd:integer. Such literals are interesting because they
are valid RDF, even though most people would regard them as an error.)
The input file containing these literals was in Turtle format when possible,
but we used N-Triples for triple stores that do not support Turtle.

Based upon a W3C compilation of XSD data types and their mappings
and relevance to the standards RDF, OWL, SPARQL, and RIF [23], we
chose a sampling of XSD data types to test. The literals we tested fell into
these categories:

– Strings: both plain and typed
– Numbers: decimal, integer, long, int, double, and float
– Dates and times: dateTime, date, time, and gYear
– Miscellaneous: anyURI, hexBinary, base64Binary, and boolean
– Irregular: Literals whose lexical form is not within the lexical space of

their data type, such as “foo”ˆˆxsd:integer

The test harness adds one literal from the input file at a time to the
triple store under test, and then a preselected set of simple queries and
filter queries are run against the literal. By simple query, we mean a query
whose where clause consists of a single triple pattern whose object is the
literal being tested. In contrast, a filter query is a query whose where
clause consists of a single triple pattern with a variable in the object
position, along with a filter that restricts that variable to be equal to
the literal under test. Examples of simple and filter queries (specifically
querying “47”ˆˆxsd:decimal) can be seen in Section 2. After the queries
are run on the current literal statement, the triple store is cleared and
the process is repeated until all the literal statements in the input file
have been tested. For each query, if its result set is non-empty, then the
spreadsheet cataloging the results indicates this with a “Yes,” while “No”
indicates an empty result set.

3.2 Software Tested

We tested the literal handling behavior of five triple stores: Jena’s in-
memory store, Jena TDB, Parliament, AllegroGraph, and OWLIM.

Jena In-Memory: Jena is an open source Java framework for building
Semantic Web applications [13]. It can read and write RDF in many file
formats, and it also includes a SPARQL query processor called ARQ. Its
highly layered and pluggable architecture makes it an ideal front end for
other triple stores as well — Mulgara, Virtuoso, OWLIM, AllegroGraph,
and Parliament can all use Jena in this fashion. When used on its own,
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it provides an easy-to-use and well documented in-memory triple store.
Jena’s in-memory store accepts irregular literals.

Jena TDB: TDB is an optional subsystem of Jena for persisting RDF and
OWL data that allows for high performance and large scale storage and
query [13].

Parliament: Parliament is an open source, high performance, and stan-
dard compliant triple store for the Semantic Web, written by Raytheon
BBN Technologies [1]. It pairs Jena’s query processor with an innova-
tive back-end store, and customizes Jena’s query processor to optimize
queries so as to derive maximum benefit from the back-end’s data orga-
nization. For this paper in order to meaningfully derive how each triple
store uniquely handles literals, the Jena API/interface was not used in
conjunction with any other triple store other than itself, Jena TDB and
Parliament. The test harness loaded Parliament from a Turtle file.

AllegroGraph: AllegroGraph is a high performance database and applica-
tion framework for the Semantic Web from Franz [8]. It supports various
clients (Python, Java, Jena, Lisp, Ruby, etc.) and has well documented ex-
amples and tutorials for implementation. AllegroGraph can read and write
RDF in RDF/XML and N-Triples file formats but not Turtle. For this
reason we were unable to add unquoted literals to AllegroGraph. Allegro-
Graph also will not accept irregular data types such as “foo”ˆˆxsd:integer.
Consequently, there are some blank cells in the AllegroGraph column of
the test results.

OWLIM: OWLIM is a triple store from Ontotext [16]. Just as Parliament
uses Jena as a front end and query processor, OWLIM uses another pop-
ular Java framework for Semantic Web applications called Sesame [18].
There are several versions of OWLIM available with varying levels of scal-
ability and price points. OWLIM-Lite was used in this study in conjunc-
tion with the Sesame library and the SPARQL query language. It supports
many file formats, including Turtle, used here. OWLIM cannot accept ir-
regular literals such as “foo”ˆˆxsd:integer.

Other Triple Stores: We chose the triple stores above because of their
popularity, free availability, and relevance to our work here at BBN. We
also tried to achieve a diversity of query processors, while still empha-
sizing Jena because it is used in our own triple store, Parliament. There
are several other well-known triple stores that we would like to test, but
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did not due to time constraints. These include (but are not limited to)
Virtuoso, Mulgara, and Oracle.

3.3 Analysis of Results

This section gives an overview of the results of our testing. Our complete
results can be found on our web site, here:

http://asio.bbn.com/2011/10/ssws/LiteralDataTypes.zip

Keep in mind that Jena and Parliament accept all literals. Allegro-
Graph does not support Turtle syntax, and therefore does not accept
unquoted literals (47, true). Also, OWLIM and AllegroGraph do not ac-
cept irregular literals (e.g., “foo”ˆˆxsd:integer). The empty blanks in the
spreadsheet are indicative of these limitations.

Most of the literal types chosen are siblings in the inheritance hier-
archy, but the types decimal, integer, long, and int form an inheritance
chain. The following sections will explain how each category of literals
(numbers, strings, times, miscellaneous, and irregular) was handled by
the various triple stores.

Numeric Types: With the numeric types (float, double, decimal, and all
the types derived from decimal), the following kinds of numeric compar-
isons are of particular interest:

1. Literals that match exactly, according to the strict rules of RDF with-
out entailment

2. Literals with identical lexical forms but differing types that share a
common primitive base data type, e.g., decimal and integer

3. Literals with identical lexical forms but differing types that do not
share a common primitive base data type (most often, this means
sibling types), and yet whose types are intuitively compatible, e.g.,
float and integer

4. Literals with identical types but differing lexical forms that map to the
same point in value space, e.g., “47”ˆˆxsd:long versus “+47”ˆˆxsd:long

Table 1 summarizes the results for numeric literals in terms of these cat-
egories. (The numbers in the table correspond to the categories of com-
parisons in the list above.)

Strings: The key question with strings is which triple stores see plain
literals (“foo”) and typed strings (“foo”ˆˆxsd:string) as equivalent. Table 2
summarizes how strings are handled by the various triple stores.
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Triple Store Query
Type

Matched
Relationships

Unmatched
Relationships

Jena in-memory Simple 1, 2, 4 3
Jena TDB, AllegroGraph,
Parliament, OWLIM Simple 1 2, 3, 4

Jena in-memory, Jena TDB,
AllegroGraph, Parliament, OWLIM Filter 1, 2, 3, 4

Table 1. Comparison Results for Numeric Literals

Triple Store Query Type Typed String versus Plain Literal
Jena in-memory,
AllegroGraph

Both (simple
and filter) Match

Jena TDB,
Parliament, OWLIM Simple No Match

Jena TDB,
Parliament, OWLIM Filter Match

Table 2. Comparison Results for Strings

Temporal Types: The temporal XSD types (dateTime, date, time, and
gYear) are treated by all the triple stores in the same manner. For all
triple stores, and in both simple and filter queries, only exact matches are
found.

anyURI: XSD type anyURI acts much like the temporal data types in
that only exact matches result in a positive comparison, except in one case:
Jena’s in-memory store finds matches between anyURI literals and strings
(either typed or plain) in simple queries only. Within a filter, anyURI
literals and strings do not match in any triple store.

hexBinary and base64Binary: Across the board, the XSD types hexBinary
and base64Binary compare equal only in the case of exact matches. Inter-
estingly, a hexBinary literal will not compare equal to the base64Binary
literal that represents the same octet sequence. For example, 1111 in hex
converts to ERE= in base64, but “1111”ˆˆxsd:hexBinary does not match
“Ere=”ˆˆxsd:base64Binary in any triple store. This is due to the fact that
hexBinary and base64Binary are sibling data types and do not derive from
a common primitive base data type.

Boolean: All triple stores match unquoted booleans (true) and typed
booleans (“true”ˆˆxsd:boolean) in both simple and filter queries (except
AllegroGraph as it does not accept unquoted literals). This is not a sur-
prise, because unquoted booleans are simply a syntactic shortcut for typed
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booleans in Turtle. A more interesting result is that no triple store matches
unquoted or typed booleans against typed or plain string literals with the
same lexical form (e.g., “true”ˆˆxsd:string and “true”).

Irregular Literals: OWLIM and AllegroGraph do not recognize and will
not accept irregular data types such as “foo”ˆˆxsd:integer. With other
triple stores, such literals compare equal in the case of exact matches.
The more interesting result is what happens when comparing an irregular
literal against a string (either typed or plain) with the same lexical form.
Table 3 shows what happens in this case.

Triple Store Query Type Typed or Plain String versus
Irregular Literal

Jena in-memory Simple Match
Jena in-memory Filter No Match
Jena TDB, Parliament Both No Match
AllegroGraph, OWLIM Both N/A — unable to store irregular literals

Table 3. Comparison Results for Irregular Literals

Overall in our tests, Jena’s in-memory store stood out as the most
accepting of types that displayed a conceptual similarity (e.g., “foo” ver-
sus “foo”ˆˆxsd:string or “47”ˆˆxsd:decimal versus “47”ˆˆxsd:integer) for
both simple queries and filter queries.The Parliament triple store is most
consistent with the way in which AllegroGraph and OWLIM treat literals
in that these three triple stores are less permissive for most conceptually
similar data types.

4 Related Work

Most of the related work in this domain is in the language specifications
themselves [14] [24] [11] [20]. Because these specifications can be com-
plex, the W3C produced a Working Group note, “XML Schema Datatypes
in RDF and OWL” [6], which clarifies typed literal equality via the D-
entailment regime.

Other work emphasizes the importance of using D-entailment in deal-
ing with inconsistencies of instances [19] and specifics of the entailment
regimes [12]. Many triple store studies have also been completed; however,
they have mostly focused on performance [21] [22]. Although not directly
targeted at RDF data types, Garcia-Castro and Gomez-Perez explored
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the interoperability of semantic web technologies using OWL. They cre-
ated an interoperability benchmark to evaluate tools and they concluded
that interoperability between Semantic Web tools is very low [9].

5 Conclusions

The treatment of typed literals by triple stores is fairly consistent, with
the exception of Jena’s in-memory store. These triple stores differ in their
treatment of conceptually similar types for a simple query. Jena TDB,
Parliament, OWLIM, and AllegroGraph implement strict literal equality.
The Jena developers, on the other hand, stated “the formal semantics
of both RDF and OWL makes it clear that entailment is a core feature
of the Semantic Web recommendation” [5]. Consequently, the Jena in-
memory model uses the D-Entailment regime to equate literals with de-
rived types [10]. Jena also implements the D-entailment rule which equates
literals with identical types and values but different lexical forms. Addi-
tionally, both Jena’s in-memory store and AllegroGraph equate typed
and untyped strings in simple queries. It is surprising that the Allegro-
Graph developers decided to implement D-Entailment for strings, but not
for numeric types. Jena’s in-memory store is also more permissive with
the XSD data type anyURI, when matched against string type in simple
queries. Interestingly, Jena’s in-memory store matches irregular literals
with strings with the same lexical form. This seems to deviate from the
D-entailment rules. All triple stores followed the same conventions for
temporal, hexBinary, base64Binary and boolean types. Overall, Jena fol-
lows D-Entailment, allowing more flexibility in user input, while the other
triple stores tend to follow strict literal equality.

It is also crucial to add that in contrast to simple queries, filter queries
recognize sibling and derived type relationships in query results for most
triple stores. This indicates that filter queries have a more permissive path
in parsing derived and sibling types. As defined by SPARQL [20], filter
queries use the XML Query language (XQuery) type promotion [4]. This
results in differences in query responses between apparently equivalent
filter queries and simple queries.

There are several possibilities for expanding on this research in the
future. The most obvious is to expand the testing to include more triple
stores (such as Virtuoso, Mulgara, and Oracle) as well as SPARQL front
ends to relational databases (such as D2RQ, Revelytix’ Spyder, and BBN’s
Asio). Another possibility is to profile the use of typed literals in various
subsets of the Semantic Web community to better understand how aspects
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of the type system affect real users. Some work has been done in this regard
based on the billion triples challenge corpus from ISWC 2008 [7], but a
more in-depth look at current data is warranted.

Finally, it would be interesting to better understand how the disparity
between literal matching in simple queries and filter queries affects query
optimizers. For instance, a filter that compares a variable for equality to
a known URI can usually be optimized away by directly substituting the
URI in place of the variable throughout the rest of the query. However, we
have shown that a filter testing for equality to a literal cannot be so easily
optimized away. This may impact how developers write their queries and
improve overall performance time.

As evidenced by semantic tools research [9] and our studies, semantic
technologies lack interoperability due to conflicting standards and devel-
oper design decisions. In order for the semantic web scalability to become
a reality, interoperability is essential. The design decisions made by devel-
opers not only effect the results users receive via queries, but the perfor-
mance of their system. OWLIM specifically states in their documentation
that they do not use the D-entailment regime because the performance
penalty is too high [17]. In further studies we would like to use larger data
sets to investigate how the triple stores implementation of RDF data type
equality effects their scalability. This data will help users decide which
triple store to select based on performance and treatment of RDF literals.

Differing standards in the treatment of typed literals pose issues for
users who expect conceptually similar types to match in their queries. Also
the triple stores we studied differed greatly in their RDF implementation,
yet their design decisions were undocumented. The different implemen-
tations lead to varying results, and it is pertinent that users know what
they are using. As the semantic web becomes an increasingly popular
framework for users, syntactic differences in typed literals are inevitable.
It is critical that the community be aware of the inherent differences in
the treatment of typed literals in order to promote correctness and main-
tainability of implementations, uniformity of practice, and simplicity of
standards.
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Abstract. Quad stores have a number of features that make them
very attractive for Semantic Web applications. Quad stores use Named
Graphs to give contextual information to RDF graphs. Developers can
use these contexts to incorporate meta-data such as provenance and ver-
sioning. The OWL language specification provides the owl:imports con-
struct as one of the key ways to reuse the ontologies on the Semantic Web.
When one ontology imports another through the owl:imports statement,
all axioms from the imported ontology are brought to the source ontol-
ogy. When implementing an online ontology repository, we have explored
a number of different approaches to reflect these imports and contextual
information in a quad store. These approaches have a direct impact on
storage requirements, query articulation, and reusability.

This paper describes different models to represent contextual informa-
tion, ontology imports and versioning. We have performed the experi-
ments in the context of storing ontologies from the BioPortal ontology
repository. This repository has 304 ontologies, with multiple versions for
many of them. We extract metrics on the levels of imports, and the
storage and performance requirements and discuss the trade-offs among
query articulation, reusability and scalability.

Keywords: Ontology Repository, Scalability, Quad Stores, SPARQL

1 Introduction

Ontology repositories act as a gateway for users who need to find ontologies for
their applications. Research institutions and companies submit their ontologies
to these repositories in order to promote their vocabularies and to encourage
inter-operation. In biomedicine, cultural heritage, and other domains, many of
the ontologies and vocabularies are extremely large, with tens of thousands of
classes. For example, SNOMED CT, one of the key terminologies in biomedicine,
has almost 400,000 classes. The Gene Ontology (GO) has 34,000 classes. These
ontologies and terminologies are updated on a regular basis, some very frequently.
For example, a new version of the Gene Ontology is published daily.
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In our laboratory, we have developed BioPortal, a community-based ontology
repository for biomedical ontologies [1].1 Users can publish their ontologies to
BioPortal, submit new versions, browse the ontologies, and access the ontolo-
gies and their components through a set of REST services. BioPortal provides
search across all ontologies in its collection, a repository of automatically and
manually generated mappings between classes in different ontologies, ontology
reviews, new term requests, and discussions generated by the ontology users in
the community.

At the time of this writing, BioPortal has 304 ontologies, with 5.3 million
classes among them. Many of these ontologies have multiple versions in the
repository. Many of the ontologies import one another or import ontologies that
are not in the BioPortal repository. Finally, the ontologies come in a number
of different formats, and thus are persisted in different backends using various
APIs. There is a single Lucene index of classes to enable search across ontologies
and the BioPortal REST API provides uniform access to all the ontologies in
the repository so that API users can be agnostic about the individual formats.
For each ontology, we provide access to the latest version of the ontology, and
partial access to the earlier versions.

We are currently working on creating a single database—a quad store—for all
the ontologies and their associated metadata. As part of the design, we evaluated
the cost, in terms of data size, of representing and materializing various aspects
of the ontologies, including the import structure of the ontologies. In this paper,
we report on our analysis and the trade-offs with respect to representing a set
of ontologies and their versions in a quad store.

Specifically, this paper makes the following contributions:

– We analyze the anatomy of a large-scale ontology repository with respect to
the frequency of updates and the structure of imports among the ontologies

– We compare the storage requirements for representing the ontologies and
their versions in a quad store, analyzing the effect of materializing imports.

2 Background

In this section, we provide background on the quad store technology, and its
relationship to the SPARQL query language. We discuss the use of these tech-
nologies to represent and query ontology metadata.

2.1 Quad Stores, Named-Graphs and RDF

The Resource Description Framework (RDF)2 is the core standard for repre-
senting data on the Semantic Web. The Semantic Web community is promoting
RDF stores (or triple stores) as the key data storage technology. In an RDF
store, data are not bound to a schema. Furthermore, we can assert data into an

1 http://bioportal.bioontology.org
2 http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
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RDF store directly from RDF sources where it is represented in native Semantic
Web formats (e. g. RDF/XML or Turtle files). SPARQL is a query language de-
signed to express queries for data viewed or stored as RDF. SPARQL introduces
the notion of Named Graphs [4, 5] to represent and encapsulate distinct RDF
Datasets.3

The notion of Named Graphs gave rise to the development of quad stores. A
quad, unlike a triple, has a fourth component that often is referred as “named-
graph,” “context” or “model.” In this paper, for the sake of consistency, we will
always refer to the fourth component as named-graph. Today, there are numer-
ous RDF databases that in essence are quad stores due to their native support
for named-graphs. Examples of these systems include 4store [8], Virtuoso [7],
Jena TDB [11] and Sesame [3]. These tools, and many others, have adopted
SPARQL as the language to query RDF graphs. SPARQL 1.0 defines a standard
mechanism for querying named-graphs. This type of query can be achieved with
either FROM NAMED or GRAPH clauses. There are two widely accepted formats to
represent named-graphs in RDF: N-Quads [6] and TriG [2]. Most quad stores
are compatible with these two formats. However, neither of these formats is an
RDF standard. Indeed, graph identification in RDF was listed as one of the
core working items in the RDF Next Steps Workshop and, possibly, it will be
standardized as part of the next RDF specification.4

2.2 Metadata, Versioning, Named-Graphs and SPARQL

Named graphs can be used in two ways. First, we can use them to represent
statements about the same resource that were made in a different context. Each
named graph contains statements that were made in a specific context (e.g., by
a particular information source). Second, we can use named graphs to collect
metadata and attach it to a document, in our case to attach metadata to an
ontology.

BioPortal keeps several versions of each ontology. For each version, it holds
metadata about its content, authorship, creation and modification dates, projects,
categories, and so on. It is important that our backend infrastructure enables us
to combine queries that filter information based on the metadata about both the
ontologies and the content of the ontologies themselves. Quad store technology
is the clear option to implement this kind of capability.

In quad stores, IRIs are used to identify graphs such that other statements
can “say” things about graphs. This auto-referenceable mechanism allows us to
incorporate metadata. As an example, the quads below—in TriG format—show
how we can say things about a graph. In this example, we use the IRI GraphX
to identify the named-graph that holds the ontology containing the term “Aro-
matic Amino Acids.” Similarly, GraphXMetadata is the IRI where triples that
say things about GraphX are held. This is just a simple example and is not nec-
essarily the model that we will use to represent metadata for ontologies.

3 http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/#rdfDataset
4 http://www.w3.org/2011/rdf-wg/wiki/TF-Graphs
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:GraphX {

:AromaticAminoAcid rdf:type owl:Class;

rdfs:subClassOf :SpecificAminoAcid, :AminoAcid;

rdfs:label "Aromatic Amino Acid" .

(... some other ontological axioms in RDF/Turtle ...) }

:GraphXMetadata {

:GraphX rdf:type owl:Ontology;

dct:created "2001-09-01"^^xsd:date;

rdfs:label "Amino Acid";

dct:format "OWL";

foaf:primaryTopic <http://bioportal.bioontology.org/ontologies/1054>;

(... some other metadata statements ...) }

This technique has become very popular for RDF graph versioning. We could
state things such as X is replaced by Y or that Z is a version of T. The data.gov.uk
project uses a similar versioning model using named graphs [14].

As you can see, named-graphs are first-class objects in a quad store and
the IRIs used to identify graphs become part of the global graph and can thus
be retrieved with SPARQL queries. The SPARQL 1.0 specification defines two
query clauses to filter and/or bind specific named-graphs. These clauses are FROM
NAMED and GRAPH. For instance, with the following query, we would retrieve
all the ontologies ?ont where a triple has a binding on subject or object to
:SpecificAminoAcid. The query also selects the predicates ?p that match such
bindings.

SELECT DISTINCT ?ont ?p WHERE {

GRAPH ?g {

{ ?x ?p :SpecificAminoAcid . }

UNION

{ :SpecificAminoAcid ?p ?x . }

}

?g rdf:type owl:Ontology .

}

The GRAPH clause can be used both with query variables or constant IRIs
depending on whether or not we need to match a specific named-graph or just
filter out named-graphs that do not satisfy other conditions. FROM NAMED is used
only to declare a set of graph IRIs where a set of triple patterns is going to be
satisfied. Combining GRAPH and FROM NAMED is possible, and we can constrain
queries to a set of graphs and still identify the graph which is the source of
information.

As an example, the following query is applied over an RDF dataset that
contains one default graph and two named graphs. Moreover, in the WHERE clause
we obtain the graph where things of type :SpecificAminoAcid are bound. This
query reflects the case where we can combine queries that retrieve both metadata
and data about the ontologies.
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SELECT ?g ?label_g ?s ?label_s

FROM :GraphMetadata

FROM NAMED :GraphX

FROM NAMED :GraphY

WHERE {

GRAPH ?g {

?s rdf:type :SpecificAminoAcid .

?s rdfs:label ?label_s .

}

?g rdfs:label ?label_g .

}

The next section describes BioPortal’s architecture, its limitations and some
reasons to motivate the replacement of the current backend technology with a
more scalable solution.

3 Motivation

Two different motifs drive this research:

1. Scalability: The BioPortal backend interacts with several databases and APIs
(Section 3.1). This variety of non-compatible sources makes it extremely hard
to implement a uniform query interface across ontologies.

2. Provenance and Versioning: Currently, BioPortal treats every ontology as
a whole, including the materialization of all the owl:imports. With this
approach, it is very difficult to track provenance and to keep several versions
of ontologies at the term/class level.

3.1 BioPortal Architecture

BioPortal is an open library of biomedical ontologies that may be accessed using
a Web-based user interface or RESTful Web services.5 The Web-based user in-
terface allows users to browse, search, and visualize ontologies and also facilitates
community participation in the ontology lifecycle, including providing reviews
of ontologies, mappings between terms, comments, and new term proposals.

This Web-based user interface is driven by a variety of RESTful services,
including services that expose information about terms in ontologies, mappings,
notes, and metadata about the ontologies themselves. This metadata includes the
information on who uploaded each ontology into the system, which authorities
support it, the size of the ontology, and other information that is specific to
BioPortal. These RESTful services are accessed using standard HTTP verbs
(POST, GET, PUT, DELETE) that are roughly equivalent to create, retrieve,
update, and delete operations.

Users of these services are able to access all the ontology formats using a
standard XML output, which is one of the major advantages of using BioPortal

5 http://bioportal.bioontology.org
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Fig. 1. BioPortal Architecture

over other systems that provide access to ontological content. Unfortunately, sup-
porting the variety of ontology formats and related artifacts (mappings, notes,
metadata) adds several layers of complexity over a traditional RDBMS solution.

In order to support multiple ontology formats, BioPortal currently utilizes
two applications, LexEVS and Protégé. LexEVS is responsible for parsing and
storing terminologies in formats that are primarily used in the biomedical do-
main: OBO Format and Rich Release Format (RRF). Protégé handles OWL,
OWL2, and Protégé Frames (Figure 1). The systems use two entirely different
models for storing information: Protégé relies on a RDBMS solution; LexEVS
uses a combination of RDBMS and file-based storage.

In addition to ontology content, we also track a set of metadata related to
each ontology in the system. We represent the metadata using an OWL ontology
that we developed for this purpose, the BioPortal Metadata Ontology [10]. The
metadata itself are a set of instances in this OWL ontology. Thus, we ultimately
use the Protégé database backend as a store for metadata information. Protégé
provides a flexible model for working with data and is well-suited for integrating
and extending existing ontologies, such as the Ontology Metadata Vocabulary
(OMV) [12]. Unfortunately, Protégé lacks some functionality that is generally
accepted as standard on quad storage platforms, including the ability to query
easily across records in different ontologies and scalability into the tens-of-million
triples range.

Therefore, as you can see in Figure 1, there is no single uniform storage for the
ontologies or their metadata. We implement this uniform layer through an API.
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However, as the amount of information in BioPortal grew, we faced scalability
issues with this approach.

We needed to represent 4.5 million term mappings between terms in Bio-
Portal ontologies. Each mapping connects two terms from different ontologies,
source and target. Each mapping also has several metadata properties associated
with it. Protégé was not scalable enough for this dataset and thus we decided
to represent the mappings in a quad store. Quad stores provided us with the
same kind of flexibility that Protégé offers with the added ability to scale easily
to support millions of triples and to provide opportunities for members of the
Semantic Web community to query our data using a SPARQL endpoint.

However, using a quad store only for mappings turned out to have its own
scalability problems: The triples that represent mappings are completely isolated
from the storage of the ontologies themselves in Protégé and LexEVS. The map-
ping triples had only the URIs for the source and target terms. Thus, if the user
needed labels, or any other information about these terms, a single query in the
system that generated a result set with ten mappings needs at least 20 queries
in order to correlate information about related terms. The BioPortal Web-based
user interface shows 100 mappings on each page, and therefore at least 200 calls
to the RESTful services are required to retrieve term information for a single
page. While we do cache results, the experience can be less than ideal for users.

The same type of issues arise when examining systems for providing ontology
notes, provisional terms, or any information about ontology content that isn’t
restricted to a single ontology, such as a query that looks for terms that share an
ID across all ontologies. We implemented a Lucene-based index to overcome some
of these issues, which will remain an integral part of the BioPortal architecture
due to its speed in performing free-text searches. However, we clearly need a
more comprehensive, scalable, and uniform solution.

Moreover, it is worth mentioning that both BioPortal’s UI and REST API
have been growing in traffic over the last three years. The number of page views
has quadrupled between Q2 2009 and Q1 2011 (see Figure 2, top chart). Fur-
thermore, BioPortal users proved to be very loyal and use the service frequently.
Almost 45% of them visit the site at least 15 times per month and 18% return
to the site 50 times or more (see Figure 2, bottom chart). The use of the REST
services has experienced outstanding growth in 2011. The average number of hits
per month grew from 3M hits in 2010 to 122M hits in 2011. 6 Our commitment
to serve this growing demand is one of the primary motivations to undertake the
project of migrating towards a more scalable infrastructure.

6 We consider the average hits per month in order to be able to compare 12 months
from 2010 versus 7 months in 2011.
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Fig. 2. BioPortal UI Traffic (per quarter, excluding Stanford) (top) and Returning
visitors (bottom)

3.2 BioPortal Ontologies

At the time of this writing, there are 284 ontologies in BioPortal. As we men-
tioned in Section 3.1, the BioPortal ontology repository supports various ontol-
ogy formats. Table 3 shows the number of ontologies per format. You can see
that 90% of the ontologies are either in OBO or OWL formats. Of that 90%,
59% are in OWL and 41% in OBO.

OBO has been the format used for many of biomedical ontologies. Recently,
however, there has been a shift and today OWL is the most popular format. This
shift is due to the standardization of OWL and the rise of standard tools such as
reasoners, query engines and editors. Moreover, there are tools that allow us to
transform OBO ontologies into OWL—such as the OWL API [9]—and therefore
use RDF serializations to store OBO ontologies in a RDF database. This study
covers both OBO and OWL; we leave the rest of the formats for future analyses.

In BioPortal, the metadata associated with each ontology follows the BioPor-
tal Metadata Ontology.7 This ontology is used to declare projects, authorship,

7 http://www.bioontology.org/wiki/index.php/BioPortal_Metadata
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Table 1. Ontology Format Occurrences in BioPortal

Format N. Ontologies

OWL 149

OBO 105

RRF 27

PROTEGE 2

UMLS-RELA 1

categories, coding schemes, users, etc. The details of classes and properties in
this ontology are not relevant for this analysis; we will only look into the overall
number of triples that we require for an ontology version. The average size of the
metadata graph for the 284 ontologies is 38 triples without significant variability
(94% of the ontologies are in the range [34,42]). In BioPortal, practically all the
metadata are attached to an ontology version. Users can modify nearly every
piece of metadata every time they submit a new ontology version. Thus, we will
associate the cost of metadata triples to ontology versions rather than to the
general concept of ontology.

There are large ontologies, such as the Gene Ontology (GO) with 73K terms
in 738K triples, that get updated every day.8 All of the versions of the Gene
Ontology would expand to more than 350M triples. Today, we are not able to
provide all the repository functions for every ontology version. Only ontology
download is available for old versions. Capabilities such as term search and
hierarchy visualization are accessible only for the latest version of each ontology.

For versioning, BioPortal deprecates ontologies using the Apple’s “Time Ma-
chine” algorithm: keep all versions for the last 7 days; keep one most recent
version per week for the last 30 days; keep one most recent version per 30 days
from the beginning.9 This logic applies only to ontologies automatically imported
from remote locations. BioPortal keeps all manually submitted versions, because
the number of versions of this kind is small.

Currently, BioPortal treats every ontology as a whole, including the mate-
rialization of all the owl:imports. Thus, if a small ontology imports a large
one then the former becomes a large ontology. If we take into account that this
problem gets reproduced for every version of that small ontology then we can
end up with a very inefficient model that contains millions of duplicated items.
Moreover, this model makes it very difficult to retrieve term provenance since
many terms are duplicated in graphs where they do not originally belong.

Our hypothesis was that we could optimise the number of quads in the system
by using a more granular model where owl:imports are not materialized and
every ontology graph only contains its own RDF triples without the triples from
the owl:imports ontologies. This type of granular model would economize the
number of triples in our data store and, at the same time, enable provenance

8 http://bioportal.bioontology.org/ontologies/1070
9 http://en.wikipedia.org/wiki/Time_Machine_(Mac_OS)
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retrieval. Figure 3 shows the difference between an import-materialized model
versus an ontology-per-graph model.10

Fig. 3. Models: Per Graph Model vs Materialization of owl:imports

The upper part of Figure 3 depicts the import structure maintained by using
named-graphs. The bottom part shows how ontologies are incorporated into
other ontologies and how this model provokes a redundancy explosion. In order
to see quantitatively the level of quad storage space optimisation that we can
gain with an ontology-per-graph model we need to analyse the occurrences of
owl:imports in the BioPortal repository.

In the next section, we analyse the size of BioPortal’s data store in triples
and the distribution of owl:imports in OWL ontologies.

4 Quad Economic Analysis

We estimate the cost, in number of quads, of asserting all the OWL ontologies
into a quad store. We also look at the scalability numbers in case that maintain-
ing all versions of each ontology becomes a requirement.

OWL and OBO formats use different mechanisms for import. In order to
incorporate ontologies in the OBO format into the import analysis we need to
study further the compatibility of OBO imports with OWL imports. Thus, the
numbers presented in Figures 4, 5 and 6 include only statistics about imports
for ontologies in OWL format.

10 Import-materialized and ontology-per-graph are key terms and we shall refer to them
in following sections.
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Fig. 4. Number of Imports per Ontology. Absolute numbers at the top, percentages at
the bottom.

One of the questions to be answered is the optimisation ratio—in num-
ber of triples—when using an ontology-per-graph model rather than a closure-
materialized model (see Section 2). This question is closely related to the number
of owl:imports in our catalog. The owl:imports distribution gives us a mech-
anism to understand the level of reusability in the data store.

There are 299 ontologies in the import closure of the 149 OWL ontologies in
BioPortal (i.e., if we follow all the owl:imports links from the 149 ontologies,
we will create a set of 299 ontologies). These 299 OWL ontologies contain 303
owl:imports, the materialized import closure is a set of 495 owl:imports. Not
all these 299 ontologies reside in BioPortal as first class citizens. Many of them
are just pushed in the system as consequence of an owl:import. We do not have
metadata for these ontologies. These ontologies could include FOAF or SKOS
which are imported by several other ontologies but are not necessarily biomedical
ontologies and thus they have not been submitted directly to BioPortal. From
the 299 OWL ontologies in the study 165 are ontologies registered in BioPortal.

Figure 4 presents absolute numbers (top chart) and the percentages (bottom
chart) of ontologies that have none, one, two or more than two imports. These
numbers—from Figure 4—are not really conclusive by themselves, even though
we can identify some tendencies. In order to extract conclusions, we also need
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Fig. 5. Closure-Materialized Number of Triples Sum per Number of Imports. Number
of imports on X Axis and number of triples on Y Axis

to know the ratio of reused triples. Figure 5 shows the distribution of number
of triples, closure materialized, per number of imports. Ontologies that have no
imports gather 5.4M triples in the system; ontologies with just one import 1.7M;
none of the categories with imports from 2 to 9 reach 0.5M triples. For ontologies
with more than 10 imports there is tendency change with a peak of 2.1M triples
generated.

Fig. 6. Closure-Materialized Number of Triples Sum per Number of Imports Grouped.
Number of imports on X Axis and number of triples on Y Axis.

Figure 6 groups the data presented in Figure 5 into two different charts. The
left-hand side groups the number of triples into three categories: (a) no imports,
(b) more than 1 and less than 10 and (c) more than 10. The right-hand side shows
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the same number grouped in two categories, the ones with imports and the ones
without. These two graphs are used in Section 5 for qualitative discussion.

In addition to the previous statistics we also measured various indicators per
ontology. Table 2 shows the number of triples without materialized imports (T.
Without C.), number with materialized imports (T. With C.), number of imports
in closure (N. Import C), depth of tree closure (Depth TI), triples import ratio
(I Ratio) and number of versions (NV). For practical reasons we only show a few
records in Table 2, but it is worth mentioning that similar numbers have been
collected for the 299 OWL ontologies. Note that the last column “NV - Number
of Versions” only applies to BioPortal ontologies and not to ontologies fetched
from the Web as part of an import. To calculate the ontology import ratio we
simply calculate the percentage of triples brought via owl:imports against the
ones held directly in the ontology, such that:
import ratio = 1 − (T. Without C./T. With C.)

Table 2. Statistical Indicators Sample - Ontologies with more than 10 imports.

Ontology T. Without C. T. With C N. Import C Depth TI I Ratio NV

NIF.owl 6 1,795,951 58 4 99.9% 9

sopharm.owl 1,317 359,087 24 4 99.6% 4

vo.owl 40,804 45,557 16 2 10.2% 92

aero.owl 698 3,981 14 2 82% 8

OntoDM.owl 4,685 8,240 11 4 43% 1

ddi.owl 2,388 5,347 10 2 55% 1

Table 3. Number of Triples and Versions for OBO and OWL Ontologies

I. Not Mat. I. Mat. N. Versions All V. Not Mat. All V. Mat.

OWL 9.75M 14.65M 817 41.2M 65.6M

OBO N/A 5.9M 3,022 N/A 593M

TOTAL N/A 20.55M 3,839 N/A 658.5M

The last indicative figures are shown in Table 3. This table includes:

– Number of triples without materialized imports (I. Not Mat.).
– Number of triples with materialized imports (I. Mat.).
– Number of versions (N. Versions).
– Number of triples for all the versions of all the ontologies without material-

ized imports (All V. Not Mat.).
– Number of triples for all the versions of all the ontologies import materialized

(All V. Not Mat.).

After having presented several important aspects related to the data size in
triples and the owl:imports distribution, we shall discuss how they impact the
design and scalability of our quad storage in the next section.
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5 Discussion

Our initial hypothesis was to assume that we could optimise the number of
quads in the system by using a more granular model where we do not materi-
alize owl:imports and every ontology graph only contains its own RDF triples
without bringing the triples from the owl:imports ontologies. In that sense, for
the 165 biomedical ontologies in OWL, Figure 4 shows a steep tail distribution
where 59% of the ontologies do not make use of owl:imports at all. Therefore,
they do not reuse any terms from other ontologies. The rest of the ontologies
(40.6%) use imports but the majority of them (27.27%) contain a small number
of imports, 5 imported ontologies or less. Ontologies with high levels of imports
are rare in our catalog, just 3.03% have more than 10 imports and from those
only 1.21% have more than 20. These figures let us conclude that the levels of
reusability in OWL ontologies for the biomedical domain is low. We do not try to
explain why this situation happens, but, arguably, the experts in the biomedical
domain have adopted ontologies earlier than many others [13]; if do not often
practice ontology reuse, works in other domains have an even longer way to go.

Next, we look more closely at what type of ontologies reuse other ontologies,
in order to determine the effects in terms of storage requirements. Because most
ontologies are self contained and they do not reuse other ontologies, even in the
model where we do not materialize imports, not many ontology graphs will refer
to other ontology graphs. However, if the 303 owl:imports are placed in the
right place, then the ontology-per-graph model would optimize the dataset size.
In an ontology-per-graph model, the ideal situation is to have the majority of
the imports in the larger and most frequently updated ontologies. The rationale
behind this conclusion is that, not all modules in a new version of an ontology
would change. In those cases we only need to assert a new version for the updated
modules and modify the metadata. Thus, we look at the relationship between
ontology sizes, number of imports and update frequency.

Figures 5 and 6 give us the relationship between ontology size, in number
of triples, and the level of modularity, in number of imports. Contrary to what
one might expect, the larger the ontology, the fewer imports it has. In other
words, larger ontologies that could benefit more from modularity actually are
not modular in practice. The exception is the peak for “> 10” category in Figure
5, which has 2.1M triples. This peak is caused by two very modular ontologies
that are also large, NIF and sopharm, with 58 and 24 imports respectively; and
1.7M and 300.5K triples respectively (see Table 2). However, ontologies like these
are an exception. Within the 14 largest ontologies in our collection, all of them
with more than 100K triples, NIF and sopharm are the only ontologies with more
than 2 imports and with more than 10% of reused import ratio. Thus, we can
conclude that the size of the ontology is not directly related to the number of
imports.

Next, we look at the absolute numbers for ontology sizes (Table 3). We can
calculate the percentage of saved triples for the latest ontology versions if we
materialize the imports, 1− (I. Not Mat./I. Mat.). The percentage obtained is
33.4% for the last snapshot and, for all versions, it goes up to 37.2%. These per-
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centages show that, even though the level of re-usability in the OWL ontologies
is very low, we can still save more than one third of the storage by moving to an
ontology-per-graph model. Moreover, that model also provides the requirements
to track provenance and implement versioning.

One of the columns in Table 3 also shows the size of the OBO ontologies, but
only for the import-materialized case. The last snapshot of the OBO ontologies
contains 5.9M triples. However, historically BioPortal has a larger number of
versions (3,022) for OBO ontologies than for OWL because they get updated
more frequently and also because OBO was the predominant format in the past.
This large number of versions makes the total number of triples to be 593M. We
hope that, once OBO ontologies use a more explicit import mechanism or their
developers switch to OWL, we will be able to save on the storage at a ratio that
is similar to the one that we observed for OWL Ontologies.

One of the motivations to maintain an import-materialized model is to fa-
cilitate SPARQL query construction. There will be cases in which we need to
run queries on a set of ontologies —and not over the global graph. In an import-
materialized model, one ontology is reflected by one graph only, and thus queries
targeting specific ontologies are easy to write. In a ontology-per-graph model,
one ontology is reflected by a closure of tree imports, which can potentially com-
plicate the query construction. It is possible to argue that, depending on the
complexity of the owl:imports network, it might not be feasible to construct
queries with hundreds or thousands of GRAPH or FROM NAMED clauses. You could
even argue that for a very large owl:imports network the size of the SPARQL
query string could become problematic. Even though all these arguments are
based on solid foundations, they would not be valid for BioPortal’s case. The
statistics collected in Section 4 show that:

1. 59% of the ontologies would be reflected by just one graph, because they do
not have imports.

2. The largest import closure contains 58 items, which is far from being the
potential cause of a problem. 58 graph clauses to construct an RDF data set
should not be a problem for any of the quad stores listed in Section 2.

3. The maximum depth of the import tree is 4 levels, and thus calculating the
import closure will never steal many computational cycles. Moreover, the
number of imports in the system makes it feasible to pre-cache all of them
at the application level. With this approach, the application would not have
to go back and forth to the SPARQL endpoint in order to calculate the
closures.

To conclude, our analysis shows that, on the one hand, ontology reuse is still
far from being the norm, but, on the other, effective reuse is a goal worth pur-
suing: as ontologies become larger in size, the level of reuse can have significant
implications for the scalability of the ontology storage systems.
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Abstract. Publishers of Linked Data require scalable storage and retrieval infras-
tructure due to the size of datasets and potentially high rate of lookups on popular
sites. In this paper we investigate the feasibility of using a distributed nested key-
value store as an underlying storage component for a Linked Data server which
provides functionality for serving Linked Data via HTTP lookups and in addi-
tion offers single triple pattern lookups. We devise two storage schemes for our
CumulusRDF system implemented on Apache Cassandra, an open-source nested
key-value store. We compare the schemes on a subset of DBpedia and both syn-
thetic workloads and workloads obtained from DBpedia’s access logs. Results
on a cluster of up to 8 machines indicate that CumulusRDF is competitive to
state-of-the-art distributed RDF stores.

1 Introduction

Linked Data refers to graph-structured data encoded in RDF (Resource Description
Framework1) and accessible via HTTP (Hypertext Transfer Protocol)[3]. Linked Data
leverages the general web architecture for data publishing and has become increasingly
popular for exposing data on the web. The Linking Open Data (LOD) cloud 2 lists
over 200 datasets and comprises billions of RDF triples. A basic variant for publishing
Linked Data is making an RDF file accessible via HTTP, e.g., by putting the file on a
standard web server.

Many datasets on the Linked Data web cover descriptions of millions of entities.
DBpedia [2], for example, describes 3.5m things with 670m RDF triples, and Linked-
GeoData [13] describes around 380m locations with over 2bn RDF triples. Standard file
systems are ill-equipped for dealing with these large amounts of files (each description
of a thing would amount to one file). Thus, data publishers typically use full-fledged
RDF triple stores for exposing their datasets online. Although the systems are in prin-
ciple capable of processing complex (and hence expensive) queries, the offered query
processing services are curtailed to guarantee continuous service3.

1 http://www.w3.org/RDF/
2 http://lod-cloud.net/
3 Restrictions on query expressivity are common in other large-scale data services, for ex-

ample in the Google Datastore. See http://code.google.com/appengine/docs/
python/datastore/overview.html\#Queries_and_Indexes.
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At the same time, there is a trend towards specialised data management systems tai-
lored to specific use cases [16]. Distributed key-value stores, such as Google Bigtable
[5], Apache Cassandra [10] or Amazon Dynamo [6], sacrifice functionality for simplic-
ity and scalability. These stores operate on a key-value data model and provide basic
key lookup functionality only. Some key-value stores (such as Apache Cassandra and
Googles Bigtable) also provide additional layers of key-value pairs, i.e. keys can be
nested. We call these stores nested key-value stores. As we will see, nesting is crucial
to efficiently store RDF data. Joins, the operation underlying complex queries, either
have to be performed outside the database or are made redundant by de-normalising
the storage schema. Given the different scope, key-value stores can be optimised for
the requirements involving web scenarios, for example, high availability and scalabil-
ity in distributed setups, possibly replicated over geographically dispersed data centres.
Common to many key-value stores is that they are designed to work in a distributed
setup and provide replication for fail-safety. The assumption is that system failures oc-
cur often in large data centres and replication ensures that components can fail and be
replaced without impacting operation.

The goal of our work is to investigate the applicability of key-value stores for man-
aging large quantities of Linked Data. We review Linked Data in Section 2 before we
present our main contributions:

– We devise two RDF storage schemes on Google BigTable-like (nested) key-value
stores supporting Linked Data lookups and atomic triple pattern lookups (Section
3).

– We compare the performance of the two storage schemes implemented on Apache
Cassandra [10], using a subset of the DBpedia dataset with a synthetic and a real-
world workload obtained from DBpedia’s access log (Section 4).

We discuss related work in Section 5 and conclude with a summary and an outlook
to future work in Section 6.

2 Linked Data

We first review basic Linked Data concepts. RDF is a data format for graph-structured
data encoded as (subject, predicate,object) triples. These triples are composed of
unique identifiers (URI references), literals (e.g., strings or other data values), and local
identifiers called blank nodes as follows:

Definition 1. (RDF Triple, RDF Term, RDF Graph) Given a set of URI references U , a
set of blank nodes B, and a set of literals L, a triple (s, p, o) ∈ (U∪B)×U×(U∪B∪L)
is called an RDF triple. We call elements of U ∪ B ∪ L RDF terms. Sets of RDF triples
are called RDF graphs.

The notion of graph stems from the fact that RDF triples may be viewed as labelled
edges connecting subjects and objects.

There are various serialisation formats for RDF, for example normative RDF/XML
and Notation3 (N3)[4]. We use the human-readable N3 in this paper. In N3, namespaces
can be introduced to abbreviate full URIs as namespaceprefix:localname, e.g., a
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parser expands foaf:name in combination with the syntactic definition of the names-
pace prefix to http://xmlns.com/foaf/0.1/name.

The N-Triples syntax4 is a subset of N3 (without namespaces declarations) where
RDF triples are written as whitespace separated RDF terms with a trailing ’.’. Brackets
(<>) denote URIs and quotes ("") denote literals. Blank node identifiers start with ‘ :’.

Definition 2. (Triple Pattern) A triple pattern is an RDF triple that may contain vari-
ables (prefixed with ‘?’) instead of RDF terms in any position.

Triple patterns can be used to express basic RDF queries. For example, a triple
pattern ?s foaf:name ?n . matches all triples with a foaf:name predicate. In
total there are eight possible patterns for RDF triples (where s,p,o denote a constant
and ? a variable): (spo), (sp?), (?po), (s?o), (?p?), (s??), (??o), (???). Queries in
SPARQL5 can be translated to query plans involving triple pattern lookups. However,
we exclude full SPARQL query processing capabilities as our goal is to provide scalable
Linked Data access.

Linked Data refers to principles [3] that mandate that things (entities or concepts)
are identified via HTTP URIs. When dereferencing the URI t denoting a thing, the web
server shall return an RDF graph g describing t; g should contain links to other URIs to
enable decentralised discovery of resources.

There is a correspondence (in URI syntax or via HTTP redirects) between t and
the information resource s which represents that data source of a graph. For an exam-
ple of a syntactic correspondence consider the resource URI http://harth.org/
andreas/foaf#ah which is described at the information resource URI http://
harth.org/andreas/foaf. The former denotes a person and the latter denotes
the physical data source which contains the RDF graph. HTTP redirects are another way
for ensuring the correspondence; a user agent performs a lookup on URI t, and the web
server answers with a new location for the data source s. User agents specify their pre-
ferred content format via HTTP’s Accept header for content negotiation. For example,
a lookup on http://xmlns.com/foaf/0.1/knows redirects to a HTML file
http://xmlns.com/foaf/spec/index.html when dereferenced via a Web
browser, or to an RDF/XML file http://xmlns.com/foaf/spec/index.rdf
when accessed via an RDF-aware client.

?s < u r i >
?p1

?o
?p2

Fig. 1. Illustration of object-subject lookups with <uri> as constant.

What should be included in the graph g is only lightly specified6. A method which
can be regarded as current best practice is employed by DBpedia, which, given a URI,

4 http://www.w3.org/TR/rdf-testcases/#ntriples
5 http://www.w3.org/TR/rdf-sparql-query/
6 [3] advises to “provide useful information”
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returns (i) all triples with the given URI (or its associated information URI) as subject
and (ii) some triples with the given URI as object are returned (Figure 1). Such a lookup
translates to a union of two triple pattern lookups (or four when including the associated
information URI lookups): (i) a (s??) lookup on the SPO index and (ii) a (??o) lookup.

Another method called “Concise Bounded Description” [15] proposes to return all
triples which contain the given URI on the subject position with provisions to ensure
that connected blank nodes and reified statements are returned. How to include the
handling of blank nodes and reified statements in our method is subject to further work.

3 Storage Layouts

In the following we describe indexing schemes for RDF triples on top of nested key-
value stores. The goals for the index scheme are:

– To cover all six possible RDF triple pattern with indices to allow for answering
single triple patterns directly from the index. In other words, we aim to provide a
complete index on RDF triples [8].

– To employ prefix lookups so that one index covers multiple patterns; such a scheme
reduces the number of indices and thus index maintenance time and amount of
space required.

Ultimately, the index should efficiently support basic triple pattern lookups and (as
a union of those) Linked Data lookups which we evaluate in Section 4.

3.1 Nested Key-Value Storage Model

Since Google’s paper on Bigtable [5] in 2006, a number of systems have been developed
that mimic Bigtable’s mode of operation. Bigtable pioneered the use of the key-value
model in distributed storage systems and inspired systems such as Amazon’s Dynamo
[6] and Apache’s Cassandra [10]. We illustrate the model in Figure 2.

We use the notation { key:value } to denote a key-value pair. We denote con-
catenated element with, e.g., sp, constant entries with ’constant’ and an empty
entry with -. The storage model thus looks like the following:

{ row key : { column key : value } }

Systems may use different strategies to distribute data and organise lookups. Cas-
sandra uses a distributed hashtable structure for network access: storage nodes receive
a hash value; row keys are hashed and the row is stored on a node which is closest in
numerical space to the row key’s hash value. Only hash lookups thus can be performed.
Although there is the possibility for configuring an order preserving partitioner for row
keys, we dismiss that option, as skewed data distribution easily can lead to hot-spots
among the storage nodes.

Another restriction is that entire rows are stored on a single storage node - data with
the same row key always ends up on the same machine. Columns, on the other hand,
are stored in order of their column keys, which means that the index allows for range
scans and therefore prefix lookups.
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Fig. 2. Illustration of key-value storage model comprising rows and columns. A lookup
on the row key (k) returns columns, on which a lookup on column keys (c) returns
values (v).

Please note that keys have to be unique; both row keys and column keys can only
exist in the index once, which has implications on how we can store RDF triples.

Cassandra has two further features which our index schemes use: supercolumns and
secondary indices. Supercolumns add an additional layer of key-value pairs; a storage
model with supercolumns looks like the following:

{ row key : { supercolumn key : { column key : value }}}

Supercolumns can be either stored based on the hash value of the supercolumn key or
in sorted order. In addition, supercolumns can be further nested.

Secondary indices, another feature of Cassandra we use for one of the storage lay-
outs, allow to map column values to row keys:

{ value : row key }

Applications could use the regular key-value layout to also index values to row keys,
however, secondary indices are “shortcuts” for such indices. In addition, secondary in-
dices are built in the background without requiring additional maintenance code.

For an introduction to more Cassandra-specific notation we refer the interested
reader to the Cassandra web site7.

We identify two feasible storage layouts: and one based on supercolumns (“Hierar-
chical Layout”), and one based on a standard key-value storage model (“Flat Layout”),
but requiring a secondary index given restrictions in Cassandra.

3.2 Hierarchical Layout

Our first layout scheme builds on supercolumns.

7 http://wiki.apache.org/cassandra/DataModel
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The first index is constructed by inserting (s, p, o) triples directly into a supercol-
umn three-way index, with each RDF term occupying key, supercolumn and column
positions respectively, and an empty value. We refer to that index as SPO, which looks
like the following:

{ s : { p : { o : - } }

For each unique s as row key, there are multiple supercolumns, one for each unique
p. For each unique p as supercolumn key, there are multiple columns, one for each o as
column key. The column value is left empty.

Given that layout, we can perform (hash-base) lookups on s, (sorted) lookups on p
and (sorted) lookups on o.

We construct the POS and OSP indices analogously. We use three indices to satisfy
all six RDF triple patterns as listed in Table 1. The patterns (spo) and (???) can be
satisfied by any of the three indices.

Triple Pattern Index
(spo) SPO, POS, OSP
(sp?) SPO
(?po) POS
(s?o) OSP
(?p?) POS
(s??) SPO
(??o) OSP
(???) SPO, POS, OSP

Table 1. Triple patterns and respective usable indices to satisfy triple pattern

3.3 Flat Layout

We base our second storage layout on the standard key-value data model. As columns
are stored in a sorted fashion, we can perform range scans and therefore prefix lookups
on column keys. We thus store (s, p, o) triples as

{ s : { po : - } }

where s occupies the row-key position, p the column-key position and o the value posi-
tion.

We use a concatenated po as column key as column keys have to be unique. Con-
sider using { s : { p : { o } } } as layout, which p as column key and o as
value. In RDF, the same predicate can be attached to a subject multiple times, which
violates the column key uniqueness requirement. We would like to delegate all low-
level index management to Cassandra, hence we do not consider maintaining lists of
o’s manually.
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The SPO index satisfies the triple patterns (s??), (sp?) and (spo) with direct lookups.
To perform a (sp?) lookup on the SPO index, we look for the column keys matching p
(via prefix lookup on the column key po) on the row with row key s.

We also need to cover the other triple patterns. Thus, two more indices are con-
structed by inserting (p, o, s) and (o, s, p) re-orderings of triples, leading to POS and
OSP indices. In other words, to store the SPO, POS and OSP indices in a key-value
store, we create a column family for each index and insert each triple three times: once
into each column family in different order of the RDF terms.

There is a complication with the POS index though, because RDF data is skewed:
many triples may share the same predicate [9]. A typical case are triples with rdf:type
as predicate, which may represent a significant fraction of the entire dataset. Thus, hav-
ing P as the row key will result in a very uneven distribution with a few very large
rows. As Cassandra is not able to split rows among several nodes, large rows lead to
problems (at least a very skewed distribution, out of memory exceptions in the worst
case). The row size may exceed node capacity; the uneven distribution makes load bal-
ancing problematic. We note that skewed distribution may also occur on other heavily
used predicates (and possibly objects, for example in case of heavily used class URIs),
depending on the dataset. For an in-depth discussion of uneven distribution in RDF
datasets see [7].

To alleviate the issue, we take advantage of Cassandra’s secondary indexes.
First, we use PO (and not P) as a row key for the POS index which results in smaller

rows and also better distribution, as less triples share predicate and object than just the
predicate. The index thus looks like the following:

{ po : { s : - } }

In each row there are is also a special column ’p’ which has P as value:

{ po : { ’p’ : p } }

Second, we use a secondary index which maps column values to row keys, resulting
in an index which allows for retrieving all PO row keys for a given P. Thus, to perform
a (?p?) lookup, the secondary index is used to retrieve all row keys that contain that
property. For (?po) lookups, the corresponding row is simply retrieved.

In effect, we achieve better distribution at the cost of a secondary index and an
additional redirection for (?p?) lookups.

4 Evaluation

We now describe the experimental setup and the results of the experiments. We perform
two set of experiments to evaluate our approach:

– first, we measure triple pattern lookups to compare the hierarchical (labelled Hier)
and the flat storage (labelled Flat) layout; and

– second, we select the best storage layout to examine the influence of output format
on overall performance.
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4.1 Setting

We conducted all benchmarks on four nodes in a virtualised infrastructure (provided via
OpenNebula8, a cloud infrastructure management system similar to EC2). Each virtu-
alised node has 2 CPUs, 4 GB of main memory and 40 GB of disk space connected to
a networked storage server (SAN) via GPFS9. The nodes run Ubuntu Linux. We used
version 1.6 of Sun’s Java Virtual Machine and version 0.8.1 of Cassandra. The Cassan-
dra heap was set to 2GB, leaving the rest for operating system buffers.. We deactivated
the Cassandra row cache and set the key cache to 100k. The Tomcat10 server was run
on one of the cluster nodes to implement the HTTP interface.

Apache JMeter11 was used to simulate multiple concurrent clients.

4.2 Dataset and Queries

For the evaluation we used the DBpedia 3.6 dataset12 excluding pagelinks; characteris-
tics of that DBpedia subset are listed in Table 2. We obtained DBpedia query logs from
2009-06-30 to 2009-10-25 consisting of 87,203,310 log entries.

Name Value
distinct triples 120,436,315
distinct subject 18,324,688
distinct predicates 42,004
distinct objects 40,531,020
Table 2. Dataset characteristics

We constructed two query sets:

– for testing single triple pattern lookups, we sampled 1 million S, SP, SPO, SO, O
patterns from the dataset;

– for Linked Data lookups we randomly selected 2 million resource lookup log en-
tries from the DBpedia logs (which, due to duplicate lookups included in the logs,
amount to 1,241,812 unique lookups).

The triple pattern lookups were executed on CumulusRDF using its HTTP interface.
The output of such a lookup is the set of triples matching the pattern, serialised as
RDF/XML.

The output of a Linked Data lookup on URI u is the union of two triple pattern
lookups: 1) all triples matching pattern (u??) and 2) a maximum of 10k triples match-
ing (??u). The number of results for object patterns is limited in order to deal with the

8 http://opennebula.org/
9 http://www-03.ibm.com/systems/software/gpfs/

10 http://tomcat.apache.org/
11 http://jakarta.apache.org/jmeter/
12 http://wiki.dbpedia.org/Downloads36
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skewed distribution of objects, which may lead to very large result sets. A similar lim-
itation is used by the official DBpedia server (where a maximum of 2k triples in total
are returned).

4.3 Results: Storage Layout

Table 3 shows the size and distribution of the indices on the four machines. The row
size of a Cassandra column family is the amount of data stored for a single row-key. For
example, for the OSP index, this is the number of triples that share a particular object.

Index Node 1 Node 2 Node 3 Node 4 Std.Dev. Max. Row
SPO Hier 4.41 4.40 4.41 4.41 0.01 0.0002
SPO Flat 4.36 4.36 4.36 4.36 0.00 0.0004
OSP Hier 5.86 6.00 5.75 6.96 0.56 1.16
OSP Flat 5.66 5.77 5.54 6.61 0.49 0.96
POS Hier 4.43 3.68 4.69 1.08 1.65 2.40
POS Sec 7.35 7.43 7.38 8.05 0.33 0.56
POS Flat - - - - - -

Table 3. Index size per node in GB. POS Flat is not feasible due to skewed distribution
of predicates. The size for POS Sec includes the secondary index.

The load distribution shows several typical characteristics of RDF data and directly
relates to the dataset statistics from Table 2. The small maximum row size for SPO
shows that there are very few triples that share a subject. The large maximum row size
of the OSP index indicates that there are a few objects that appear in a large amount of
triples, i.e., the distribution is much more skewed (this is usually due the small number
of classes that appear as objects in the many rdf:type triples).

Here, we can also see the difference between the hierarchical and secondary POS
indices. The hierarchical POS index only uses the predicate as key, leading to a very
skewed distribution (indicated by the maximum row size) and a very uneven load dis-
tribution among the cluster nodes (indicated by the high standard deviation). The POS
index using a secondary index fares much better as it uses the predicate and object as
row key. This validates the choice of using secondary index for POS over the hierarchi-
cal layout.

4.4 Results: Queries

The performance evaluation consists of two parts: first, we use triple pattern lookups to
compare two CumulusRDF storage layouts and, second, we examine the influence of
output formats using Linked Data lookups.

Triple Pattern Lookups Fig. 3 shows the average number of requests/s for the two
CumulusRDF storage layouts (flat and hierarchical) for 2, 4, 8, 16 and 32 concurrent
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Fig. 3. Requests per second for triple pattern lookups with varying number of clients.

clients. Overall, the flat layout outperforms the hierarchical layout. For 8 concurrent
clients, the flat layout delivers 1.6 times as many requests per second as the hierarchi-
cal layout. For both layouts the number of requests per second does not increase for
more than 8 concurrent clients, indicating a performance limit. This may be due to the
bottleneck of using a single HTTP server (as we will see in the next section).
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Fig. 4. Average response times per triple pattern (for 8 concurrent clients). Please note
we omitted patterns involving the POS index (P and PO). Error bars indicate the stan-
dard deviation.

Fig. 4 shows the average response times from the same experiment, broken down
by pattern type (S, O, SP, SO and SPO). This shows the differences between the two
CumulusRDF storage layouts. While the hierarchical layout performs better for S, O
and SP patterns, it performs worse for SO and SPO patterns. The worse performance
for SO and SPO is probably due to inefficiencies of Cassandra super columns. For
example, Cassandra is only able to de-serialise super columns as a whole, which means
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for SPO lookups all triples matching a particular subject and predicate are loaded. This
is not the case for the flat layout (which does not use super columns): here, Cassandra
is able to load only a single column, leading to much better response times.

Linked Data Lookups Fig. 5 shows the average number of requests per second of
the flat layout of CumulusRDF with two different output formats: RDF/XML and N-
Triples. As CumulusRDF stores RDF data in N3 notation the N-Triples output is cheaper
to generate (for example, it does not require the escaping that RDF/XML does). This
is reflected in the higher number of lookups per second that were performed using
N-Triples output. The difference between the two output format is more pronounced
for a higher number of concurrent clients: for 4 clients N-Triples is 12% faster than
RDF/XML, whereas for 8 clients the difference is 26%. This indicates that the per-
formance is mainly limited by the Tomcat server, whose webapp performs the output
formatting.
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Fig. 5. Requests per second Linked Data lookups (based on flat storage layout) with
varying number of clients (including measure of effect of serialisation).

4.5 Conclusion

Overall, the evaluation shows that the flat layout outperforms the hierarchical layout.
We also see that Apache Cassandra is a suitable storage solution for RDF, as indicated
by the preliminary results. As the different layouts of CumulusRDF perform differently
for different types of lookups, the choice of storage layout should be made considering
the expected workload. From the experiments we can also see that the output format
also has a large impact on performance. It may be beneficial to store the RDF data in
an already escaped form if mainly RDF/XML output is desired.
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5 Related Work

A number of RDF indexing schemes have been devised. YARS [8] described the idea
of “complete” indices on RDF with context (quads)13, with an index for each possible
triple pattern. Similar indices are used by RDF-3X [11] and Hexastore [17]. All of these
systems are built to work on single machines. In our work we use complete indices for
RDF triples, implemented in three indices over a distributed key-value store.

Abadi et al. introduced an indexing scheme on C-Store for RDF [1] called “vertical
partitioning”, however, with only an index on the predicate while trying to optimise
access on subject or object via sorting of rows. The approach is sub-optimal on datasets
with many predicates as subject or object lookups without specified predicate require a
lookup on each of the predicate indices. For a follow-up discussion on C-Store we refer
the interested reader to [12].

The skewed distribution for predicates on RDF datasets and the associated issues in
a distributed storage setting have been noted in [9].

Stratustore is an RDF store implemented over Amazon’s SimpleDB [14]. In contrast
to Stratusstore, which only makes use of one index on subject (and similarly the RDF
adaptor for Ruby14), we index all triple patterns. In addition, Cassandra has to be set up
on a cluster while SimpleDB is a service offering, accessible via defined interfaces.

6 Conclusion and Future Work

We have presented and evaluated two index regimen for RDF on nested key-value
stores to support Linked Data lookups and basic triple pattern lookups. The flat index-
ing scheme has given best results; in general, our implementation of the flat indexing
scheme on Apache Cassandra can be seen as a viable alternative to full-fledged RDF
stores in scenarios where large amounts of small lookups are required. We are work-
ing on packaging the current version of CumulusRDF for publication as open source at
http://code.google.com/p/cumulusrdf/. We would like to add function-
ality for automatically generating and maintaining dataset statistics to aid dataset dis-
covery or distributed query processors. Future experiments include measures on work-
loads involving inserts and updates.
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13. C. Stadler, J. Lehmann, K. Höffner, and S. Auer. Linkedgeodata: A core for a web
of spatial open data, 2011. Under review, preliminary version at http://www.
semantic-web-journal.net/sites/default/files/swj173_1.pdf.

14. R. Stein and V. Zacharias. Rdf on cloud number nine. In Workshop on NeFoRS: New Forms
of Reasoning for the Semantic Web: Scalable & Dynamic, 2010.

15. P. Stickler. CBD - concise bounded description, June 2005. W3C Member Submission,
http://www.w3.org/Submission/CBD/.

16. M. Stonebraker and U. Cetintemel. ”one size fits all”: An idea whose time has come and
gone. In Proceedings of the 21st International Conference on Data Engineering, ICDE ’05,
pages 2–11. IEEE Computer Society, 2005.

17. C. Weiss, P. Karras, and A. Bernstein. Hexastore: sextuple indexing for semantic web data
management. Proceedings of the VLDB Endowment, 1(1):1008–1019, 2008.

SSWS 2011

42



Optimizing Unbound-property Queries to RDF Views 

of Relational Databases 

Silvia Stefanova, Tore Risch 

Uppsala University, Department of Informational Technology 

Box 337, SE-751 05 Uppsala, Sweden  

{Silvia.Stefanova, Tore.Risch}@it.uu.se 

Abstract. SAQ (Semantic Archive and Query) is a system for querying and 

long-term preservation of relational data in terms of RDF. In SAQ relational 

data in a back-end DBMS is exposed as an RDF view, called the RD-view. SAQ 

can process arbitrary SPARQL queries to the RD-view. In addition long-term 

preservation as RDF of selected parts of a relational database is specified by 

SPARQL queries to the RD-view. Such queries usually select sets of RDF 

properties and thus in the query definition a property p is unknown. We call 

such queries unbound-property queries. This class of queries is also present in 

the SPARQL benchmarks. We optimize unbound-property queries by 

introducing a query transformation algorithm called Group Common Terms, 

GCT. It pulls out from a DNF normalized query those common terms that can 

be translated to SQL predicates accessing the relational database. Our 

experiments using the Berlin SPARQL benchmark show that GCT improves 

substantially the query execution time to a back-end commercial relational 

DBMS for both selective and unselective unbound-property queries. We 

compared the performance of our approach with the performance of other 

systems processing SPARQL queries over views of relational databases and 

showed that GCT improves scalability compared to the approaches used by the 

other systems.  

Keywords: SPARQL queries, RDF views of relational databases, query 

optimization, query rewrites, unbound property queries 

1   Introduction 

Semantic Web technology and, in particular, RDF and RDFS seem promising for both 

search and long-term preservation of any kind of data including data currently stored 

in relational databases. In order to investigate the use of RDF for both search and 

archival of existing relational databases we have developed the SAQ (Semantic 

Archive and Query) system. In SAQ relational data in a back-end DBMS is exposed 

as RDF by a view, called the RD-view, represented in a Datalog dialect. The RD-view 

is automatically generated by accessing the database schema. SAQ can process 

arbitrary SPARQL queries to the RD-view. Long-term preservation as RDF of the 

contents of selected parts of a relational database is specified by SPARQL queries to 

the RD-view. 
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In the RD-view tables are represented as RDFS classes and attributes as RDF 

properties. Each data value in the relational database is viewed as a triple (s, p, v), 

where the subject s is a URI identifying a row in a relational table, p is an RDF 

property representing the column (i.e. attribute) where a value is stored, and v is the 

data value of the attribute for the row. In SAQ a SPARQL query to the RD-view is 

transformed into an execution plan containing SQL calls to the back-end relational 

DBMS followed by post-processing.   

Queries to archive database contents typically select sets of attributes of tables to 

archive. This corresponds to selecting sets of RDF properties in the RD-view to be 

archived, for example all properties of the class representing the table offer. 

Therefore, in such SPARQL queries a property p in some triple pattern is not known. 

We call such queries unbound-property queries. Moreover, unbound-property queries 

are also present in SPARQL benchmarks. For example, in the SP2Bench benchmark 

[18] queries Q9 and Q10 are unbound-property queries, and in the Berlin SPARQL 

benchmark [2] Query 9 and Query 11 are unbound-property queries, while Query 9 is 

a DESCRIBE query that can be expressed as an unbound-property query. Since p is 

unknown in unbound-property queries, the translation from SPARQL to SQL is not 

trivial and can ”easily result in large unions” of sub-queries [7] and therefore “using 

of variables in the predicate position is discouraged” [8]. 

In this paper we present a novel approach for optimizing unbound-property queries 

by implementing a predicate rewrite rule called group common terms (GCT). GCT is 

shown to substantially improve SPARQL query execution time. It partially 

denormalizes disjunctive normal form (DNF) predicates to form query fragments 

doing select-project-joins over the back-end relational tables. The reason for the 

performance improvement is that GCT generates execution plans that access data in 

row-order, which is substantially more efficient to process than without GCT, where 

data is accessed column-wise. In the performance section it will be shown that our 

approach improves query performance compared to a naïve approach without using 

GCT. Furthermore, we show that SAQ with GCT executes unbound-property queries 

substantially faster than other systems able to process SPARQL queries to views of 

relational databases [4][8]. By investigating the SQL queries emitted by the other 

systems, we show that they do not employ query transformations similar to GCT. 

The rest of this paper is organized as follows. First, in Section two unbound-

property queries are defined and exemplified. In Section three the architecture of the 

SAQ system is presented, the RD-view is defined, and the steps of the query 

processing in SAQ are explained. In Section four the GCT algorithm is presented. 

Section five analyzes the performance of SAQ for unbound-property queries and 

compares it with related systems. Section six describes related work and finally 

Section seven summarizes.  

 

2   Unbound-property Queries  

A bound-property triple pattern is a SPARQL triple pattern (s, P, v) where the 

property P is a URI representing an RDF property, e.g. (?s1 
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saq:product#review/person ?s.). For SPARQL queries to an RD-view the property 

must match a URI representing a relational column, otherwise the result is empty. 

An unbound-property triple pattern is a triple pattern (s, u, v) where u is a variable, 

e.g. (?s ?p ?v) or (%offerXYZ% ?property ?hasValue). 

A bound-property query is a SPARQL query having only bound-property triple 

patterns. An unbound-property query is a SPARQL query having one or several 

unbound-property triple patterns. Finally, a simple unbound-property query is an 

unbound-property query with a single unbound-property pattern. 

Fig. 1 shows a small relational database product having three tables offer, person, 

and review. The tables are parts of the relational database generated by the Berlin 

SPARQL benchmark data generator [1]. In the example, they are populated with two 

offers, two persons, and a review made by each of them. In the scalability 

experiments later, we use the full Berlin benchmark relational database with the tables 

product, offer, person, producer, productfeature, productfeatureproduct, producttype, 

producttypeproduct, review, and vendor.  

The columns onr, nr, and rnr are the primary keys in the tables, while the column 

person in table review references the column nr in table person as foreign key. 

Table offer 

onr price  deliveryDays 

5 854.18 3 

7 440.9 5 

Table review       Table person     

rnr person reviewDate  nr name country publisher 

 10 1 2007-09-16  1 Caryn KR 9 

166 8 2006-05-12  8 Linda-Nada AT 3 

Fig. 1. product database   

The following queries are examples of SPARQL queries to the RD-view for 

preservation and search of the product database. They represent different kinds of 

unbound-property queries with varying selectivity.  

Query Q1 

 
 

 

(1) 

SELECT ?s ?p ?v  

FROM <product> 

WHERE {?s rdf:type %offerType%. 

       ?s ?p        ?v        } 

Query Q2  

 

 

(2) 

SELECT ?property ?hasValue ?isvalueOf 

FROM <product> 

WHERE { 

        {%offerXYZ% ?property ?hasValue } 

        UNION 

        {?isValueOf ?property %offerXYZ%} } 
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In the queries <product> denotes the URI for the RD-view of the database 

product.  

Q1, Q3, and Q4 are simple unbound-property queries, while Q2 is a union of 

simple unbound-property queries. 

Query Q1 converts the entire table offer to RDF triples. %offerType% is the URI 

associated with table offer. Q1 is a very unselective unbound-property query.  

Q2 is a highly selective query that retrieves all information about an offer 

%offerXYZ%, i.e. a single row from the table offer. Q2 is called „Query 11‟ in the 

Berlin SPARQL Benchmark [1][2]. Q2 searches for both the properties and the 

inverse properties of an explicitly given offer.  

Q3 retrieves all the properties of a person for a given name %nameXYZ%. Like Q2 

query Q3 is highly selective, it selects one row from the table person. The difference 

from Q2 is that the subject of the unbound-property is not explicitly specified, so the 

row in the relational database cannot be identified by the URI as in Q2.  

Query Q4 retrieves all properties of the 10% of all reviewers coming from country 

„JP‟.  Unlike Q3 the name of a described person is not explicitly specified, but are 

retrieved by joining the tables person and review. It is an unbound-property query 

with a join. Q4 is more selective than Q1 but much less selective than Q2 and Q3 

since it retrieves more rows when the database grows. 

It is shown in section five that the performance of the unbound-property queries 

Q1…Q4 is substantially improved by applying the proposed GCT rule. Queries like 

Q2 defined with a „UNION‟ clause are handled as a union of several non-disjunctive 

queries, where GCT is applied on each sub-query in the union. The unusual case of 

unbound-property queries with several unbound-property patterns in a conjunction are 

also handled by SAQ, but are outside the scope of this paper. The processing of 

bound-property queries to an RD-view is also outside the scope and was described in 

[15][16]. 

 

3 SAQ 

The architecture of the SAQ system is presented in Fig. 2. The source DB is the 

underlying relational database, which can be queried and preserved by SAQ. The RD-

view generator generates the RD-view over the source DB from the database schema 

Query Q3  

 

(3) 
SELECT ?s ?p ?v  

FROM <product>  

WHERE{ ?s  saq:product#person/name %nameXYZ%. 

       ?s  ?p                      ?v       } 

 
Query Q4 

 

SELECT ?s ?p ?v 

FROM <product>  

WHERE { ?s1 saq:product#review/person  ?s  . 

        ?s  saq:product#person/country 'JP’. 

        ?s  ?p                          ?v } 

 

 

 

(4) 

SSWS 2011

46



by using the RD-view definitions. The query processor executes arbitrary SPARQL 

queries to the RD-view by accessing the source DB through the JDBC wrapper.  

When the source DB or part of it is to be preserved as RDF a SPARQL query 

extracting the desired content is sent to the query processor. The query result is 

transformed by the archiver into RDF triples and stored in a repository of archive 

files as N-Triples [14]. The archiver stores two N-triple files – one with the 

transformed query result, called the data archive and another one with schema 

information, called the schema archive. For instance, when all instances of class 

%offerType% representing the content of the relational table offer are unloaded as 

RDF, Q1 is executed by the query processor in SAQ.  

Later on, when a preserved database is to be restored, the reloader reads the 

archive files from the repository and makes it live again by reloading it into a 

destination DB. It first reads the schema archive to generate the relational database 

schema and then loads the data by reading the data archive.  

3.1 RD-view Definition 

In the RD-view each relational table is represented as an RDFS class, while each 

column is represented as an RDF property, as prescribed in [22]. For example, the 

table person is represented by the RDFS class URI saq:product#person. The URIs 

saq:product#person/name and saq:product#person/country are the RDF properties 

associated with the columns name and country of table person.  

SAQ contains four meta-tables cMap, pMap, fkMap, and rmmMap providing 

mappings between RDF resources and the relational schema. The class mapping 

table, cMap(T, ClassID), maps 1-1 each relational table named T to the corresponding 

RDFS class ClassID. Here T is primary key and ClassID is secondary key. The 

property mapping table, pMap(T, Aj, PropID), maps each column (attribute) named Aj 

in table T into an RDF property PropID. The composite primary key is T + Aj, and 

PropID is secondary key. The foreign key mapping table, fkMap(T, Ai, T’, ResID) 

maps a foreign key attribute Ai in a table T referencing table T’ into an RDF resource 

ResID. The composite primary key of fkMap is T + Ai + T’, and ResID is secondary 

key. Finally, the many-to-many relationship mapping table, rmmMap(T, Am, An, T’, 

T’’, RmmID) maps the attribute pair (Am, An) of the composite primary key in T, 

Fig. 2. SAQ Architecture 
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where Am and An are foreign key attributes referencing tables  T’ and T’’ into an RDF 

resource RmmID.  

 SAQ populates the meta-tables by accessing the catalogue of the relational 

database to construct identities of ClassID, PropID, ResID, and RmmID. Furthermore, 

the user can update the mapping tables to override default mappings in order to match 

some ontology or to limit data access. 

In the following Datalog definitions we use capital letters to denote constants and 

small letters to denote variables. 

The RD-view, defined in Datalog is a union of the following sub-views: the 

relational column views CT,A, the foreign key views, FKT,A, the many-to many 

relationship views, MMT, and the row class views, RCT. For instance, the RD-view for 

the product database, RD-viewproduct is a union of: 

 the relational column views for attributes price and deliveryDays of table offer 

 the relational column views for attributes name, country, and publisher of table 

person 

 the relational column view for attribute reviewDate of table review 

 the foreign key view for attribute person of table review 

 the row class views for tables offer, person, and review 

The RD-view for the product database is  

 
RD-view (s,p,v) :- 

C (s,p,v)       

C (s,p,v)   

C (s,p,v)       

C (s,p,v)     

C (s,p,v)    

C (s,p,v)    

FK (s,p,v)     

RC (s,p,v)         

RC (s,p,v)        

RC (s,p,v) 

 

OR 

OR 

OR 

OR 

OR 

OR 

OR 

OR 

OR 

(5) 

 

In general, an RD-view in SAQ has the following structure: 

 
RD-view(s,p,v) :- 

OR (OR (C  (s,p,v)))  OR 

 T     A                      

OR (OR (FK (s,p,v)))  OR 

 T     A                        

OR (MM (s,p,v))        OR 

 T                      

OR (RC (s,p,v)) 

 T 

(6) 

where OR (P) denotes a disjunction over all P for each possible value of B. 
            B  

In general, a relational column view CT,A  (7a) is defined for each attribute 

(column) A that is neither primary key nor a foreign key attribute of each table T. 
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C  (s,p,v) :-  

R (a ,..,a ,..,a )  

cMap(T,cid)           

pMap(T,A ,p)          

rowid(cid,(a ,..,a ),s) 

v= a                   

 

AND                          

AND 

AND 

AND 

C (s,p,v): 

R (rnr,person,reviewDate) 

cMap(‘review’,cid)          

pMap(‘review,’reviewDate’,p) 

rowid(cid,(rnr),s)        

v = reviewDate               

 

AND 

AND 

AND 

AND 

(7) 

a) b) 

In (7a) RT is the source predicate representing the relational database table T, and 

Aj is the name of the attribute A in T. (a1, …,aj, …, ar) is a tuple representing a row in 

T. The primary key of T is represented by the tuple (a1,…,ak). The variable cid is 

bound to the RDFS class associated with table T. The rowid predicate maps row 

identifiers to relational rows. It creates a unique URI s representing a row identifier in 

T by concatenating the class associated with a table and the primary key of a row. The 

predicate rowid is implemented in SAQ as a multidirectional foreign predicate [12], 

which implements both i) the construction of a new row identifier as described above 

and ii) its inverse to access the primary key based on a known row identifier. The URI 

p represents a relational attribute as an RDF property. The attribute variable aj (and 

its alias v) holds the value of attribute Aj in a row. 

Example (7b) shows the relational column view Creview,reviewDate that represents 

attribute reviewDate in table review. Rreview is the source predicate of table review and 

cid is bound to its associated class.  

A foreign key view FKT,A for non-composite foreign key A in table T has the 

structure in (8a). FKT,A is defined in terms of the class URI cid associated with T, the 

class URI cid’ associated with the table T’ owning the foreign key, and the name of 

the foreign-key attribute, Ai. For example, (8b) shows the foreign key view 

FKreview,person. SAQ supports composite key foreign key views as well, which is not 

elaborated here.  

 
FK (s,p,v) :-  

R (a ,..,a ,..,a )      

cMap(T,cid)            

rowid(cid,(a ,..,a ),s)  

fkMap(T,A
i
,T’,p)         

 

cMap(T’,cid’)           

rowid(cid’,(a ),v)     

 

AND 

AND 

AND 

AND 

 

AND 

 

FK (s,p,v) :-  

R (rnr,person,reviewDate)  

cMap(‘review’,cid)    

rowid(cid,(rnr),s) 

fkMap(‘review’,’person’, 

               ’person',p) 

cMap(‘person’,cid’)  

rowid(cid’,(nr),v)     

 

 AND 

 AND 

 AND 

 AND 

  

 AND 

 

(8) 

a) b) 

 

A many-to-many relationship view MMT,A,B defined a many-to-many relationship 

between two other tables T’ and T’’ represented by a connection table T of foreign 

keys (A, B) [22].  This is not further elaborated here.  

Finally, a row class view RCT (9a) represents the RDF classes of the row identifiers 

in a relational table T. For example, (9b) shows the row class view for table review, 

RCreview. 
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Fig. 3. Query processing 

           in SAQ 

 

RD-view expander 

DNF - normalizer 

GCT transformer 

SQL generator 

RDBMS 

Post-processor 

SPARQL parser 

SPARQL 

query 

RC (s,p,v) :- 

R (a ,...,a )    

cMap(T,cid)  

rowid(cid,(a ,..,a ),s)   

p = rdf:type              

v = cid 

 

AND 

AND 

AND 

AND 

 

RC (s,p,v) :- 

R (rnr,person,reviewDate) 

cMap(‘review’,cid)         

rowid(cid,(rnr),s)         

p = rdf:type                  

v = cid 

 

AND 

AND 

AND 

AND 

 

(9) 

a) b) 

    

3.2 Query Processing 

The main steps of the query processing in SAQ are illustrated by Fig. 3. The SPARQL 

parser transforms the SPARQL query into a Datalog expression where each SPARQL 

triple pattern becomes a reference to the RD-view. The RD-view expander recursively 

expands each RD-view reference in the query into a disjunctive expanded RD-view. It 

thereby looks up the mapping tables cMap, pMap, fkMap, and rmmMap to replace the 

variables in the expanded RD-view with corresponding URIs. Then it simplifies the 

query by unifying terms [9]. Each bound-property 

triple pattern is thereby simplified into a single 

conjunction [15] since the property URI determines 

the accessed table‟s attribute. However, each 

unbound-property triple pattern will remain a 

disjunction. The DNF-normalizer transforms the 

simplified query to a disjunctive normal form (DNF) 

predicate. The GCT transformer applies the GCT 

rewrite rule to transform the DNF predicate into a 

more efficient representation. It groups those 

common terms in different disjuncts of the DNF 

predicate that can be translated to SQL. The SQL 

generator generates calls to SQL for each grouped 

query fragment. The post-processor transforms the 

result from the SQL queries sent to the relational 

DBMS, e.g. it constructs URI objects and forms 

SPARQL result tuples. All processing in the system 

is streamed so that no large intermediate collections 

are generated. 

4 The GCT Rule 

The GCT rule is applied on a DNF predicate. It extracts from the disjuncts common 

terms that can be translated to SQL queries, i.e. source predicates RT and SQL 

comparisons predicates. After GCT the DNF predicate becomes a disjunction of 

conjunctions between grouped terms and disjunctions of the remaining terms with the 

grouped terms removed. The remaining terms cannot be expressed in SQL and must 

be post-processed. For example, (10) shows the view expanded, simplified, and DNF 
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normalized unbound-property query Q4 where the tables cMap, pMap, and fkMap 

have been looked up by the RDF-view expander to obtain for each table T its 

associated RDFS class CT, and the RDF properties PT,Aj=saq:product#T/Aj  

representing the attributes Aj in T. 
Q4(s,p,v) :-   

(R (nr,v,’JP’,publisher)  

 R (rnr,nr,reviewDate)           

 rowid(C ,(nr),s)        

 rowid(C ,(rnr),s1)        

 p = saq:product#person/name)             

(R (nr,name,’JP’,publisher)   

 R (rnr,nr,reviewDate) 

 rowid(C ,(nr),s)     

 rowid(C ,(rnr),s1)  

 p = saq:product#person/country) 

 v = ‘JP’ )                                

(R (nr,name,’JP’,v)               

 R (rnr,nr,reviewDate) 

 rowid(C ,(nr),s)        

 rowid(C ,(rnr),s1)  

 p = saq:product#person/publisher)         

(R (nr,name,’JP’,publisher)        

 R (rnr,nr,reviewDate)        

 rowid(C ,(nr),s)        

 rowid(C ,(rnr),s1)  

 p = rdf:type 

 v = C  )  

 

AND 

AND 

AND 

AND 

     OR 

AND 

AND 

AND 

AND 

     OR 

 

AND 

AND 

AND 

AND 

     OR 

AND 

AND 

AND 

AND 

AND 

 

(10) 

We notice that bold marked terms, representing source predicates, can be pulled 

out and later translated to a single SQL join query. In the example GCT will produce 

the predicate: 
Q4(s, p, v) :-  

(R (nr,name,‘JP’,publisher)  

 R (rnr,nr,reviewDate)) 

  (rowid(C ,(nr),s)       

   rowid(C ,(rnr),s1)            

   p = saq:product#person/name     

   v = name)                                

  (rowid(C ,(nr),s) 

   rowid(C ,(rnr),s1)            

   p = saq:product#person/country 

   v = ’JP’)                 

  (rowid(C ,(nr),s) 

   rowid(C ,(rnr),s1)            

   p = saq:product#person/publisher 

   v = publisher)                            

  (rowid(C ,(nr),s)      

   rowid(C ,(rnr),s1)             

   p = rdf:type 

   v = C )   

 

AND 

AND 

AND 

AND 

AND 

     OR  

AND 

AND 

AND 

     OR 

AND 

AND 

AND 

     OR 

AND 

AND 

AND 

(11) 
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In (11) the bold marked accesses to the source predicates are broken out from the 

disjunction and referenced only once, while in (10) the source predicates are 

referenced in each disjunct.  

Without GCT the SQL generator will construct several SQL queries, one for each 

conjunction that can be translated to SQL. For example, in (10) the four bold marked 

conjunctions would produce these four SQL queries:  

 
1) SELECT name from person p, review r WHERE p.country=’JP’ 

AND p.nr=r.person 

2) SELECT country from person p, review r WHERE 

p.country=’JP’ AND p.nr=r.person 

3) SELECT publisher from person p, review r WHERE 

p.country=’JP’ AND p.nr=r.person 

4) SELECT nr from person p, review r WHERE p.country=’JP’ 
AND p.nr=r.person 

(12) 

 

The four queries would be sent to the relational DBMS and their result tuples 

postprocessed in sequence. Binding of s, p and v has to be performed by the not bold 

marked post-processing predicates in (10) after the rows are retrieved since object 

construction and result variable bindings cannot be expressed in SQL. 

With GCT applied in (11) a single SQL query is produced from the grouped terms: 

 
SELECT nr, name, country, publisher from person   p, 

review r WHERE p.country=’JP’ AND p.nr=r.person (13) 

 

In (11) the values from the relational tables are retrieved in row-order, while in 

(10) they are retrieved column-by-column. Therefore the execution plan generated 

from (11) is more efficient than the execution plan from (10). 

In general, the steps of the GCT algorithm applied on a DNF predicate are the 

following: 

(i) In a pre-step, normalize the variable names of the DNF predicate so that the same 

variable names are used in each disjunct. 

(ii) Allocate a hash table that for each predicate group maintains mappings to the 

disjuncts from which its predicates have been extracted. 

(iii) For each disjunct, extract the source predicates and SQL comparison predicates 

to form a conjunctive predicate group to extract. Use the entire extracted conjunction 

as key in the hash table.  

 (v) After the entire DNF predicate is scanned, go through the hash table and form for 

each extracted conjunction c a conjunction between c and the remaining terms in the 

disjuncts where c occurs. Finally, form a disjunction of all constructed conjunctions. 

In the example this transforms (10) into (11). 

The pseudo code of the GCT algorithm is the following: 

 
Function GCT(P, gf) -> GP 

Input:P:  a DNF predicate with normalized variable names 

      gf: a function that extracts a conjunction of specific  

          terms, e.g. R , SQL comparisons from a conjunction 

Output:GP: P grouped on the common terms  

1. Allocate a hash table Ht for the common terms in disjuncts  

2. GP:=null 

3. for each disjunct D in P do 
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4.   if D is an atom then GP:= orify(GP,D)  

5.   else if D is not a conjunction then GP:=orify(D,GP) 

6.   else if D has only one term then GP:=orify(D,GP) 

7.   else CT:=gf(D)   /*CT is a list of common terms)*/ 

8.        if CT=null then GP:=orify(D,GP) 

9.        else put in Ht(key=CT):=  

               orify((D with CT removed), 

               (existing value for CT in Ht )) 

10. for each (CT’ and valueCT’) in Ht do 

11.   GP:=orify(andify(CT’, valueCT’),GP) 

14. return GP 

 

The function orify(x,y) forms a disjunction between predicates x and y, and 

andify(x,y) forms a conjunction.  

We notice that the processing is done in one pass and is therefore O(N) where N is 

the number of disjuncts in the DNF predicate. 

5 Performance 

The measurements were made on a PC Intel(R) Core(TM), 2Quad CPU Q9400 with 

2.67 GHz and 8 GB RAM running 64-bits Windows 7 Professional. The impact of 

GCT was evaluated for the unbound-property queries Q1, Q2, Q3, and Q4. We 

compare the performance of SAQ with Virtuoso RDF Views [8] and D2RQ [4], all 

systems accessing the same back-end MS SQL Server database. The experiment 

configuration was the following: 

1. MS SQL server 2008 was configured with the default settings for the min and max 

server memory. 

2. The SQL data was generated by the Berlin benchmark data generator [1][2] and 

loaded into the relational database.  

3. Non-clustered, non-unique indexes were put on the columns country and name in 

the person table to speed up queries Q3 and Q4.  

4. For Virtuoso RDF Views, the RDF view to the underlying relational database was 

generated on the Virtuoso server (ver. 06.02.3128, Windows-64) by using the 

Virtuoso Conductor tool. The SPARQL queries to the RDF view were run from a 

Java program, implementing a Jena Provider [23], which allows users to query 

Virtuoso RDF views from Java. The Java heap size was set to 1 GB. 

5. For D2RQ (v.07), the RDF view of the underlying RDBMS was generated by 

D2RQ‟s auto-generated mapping script [3]. In the generated script we inserted the 

option “d2rq:useAllOptimizations true” to guarantee that we use full optimization 

in D2RQ. The SPARQL queries were run from a Java program calling the D2RQ 

Engine through Jena2 [3]. The Java heap size was set to 1 GB. 

6. All measurements were made five times and the mean values plotted. The standard 

deviation was less than 10% in all measurements. 

7. The default mappings of the analyzed systems SAQ, Virtuoso RDF Views, and 

D2RQ all produce different results. For example, some redundant labels and 

inverse properties are produced by Virtuoso RDF Views and D2RQ. To make fair 

comparisons we configured the systems so that they all generated the same query 
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result. To investigate whether the performance is better with the default mappings 

we also measured Virtuoso RDF Views and D2RQ with their default mappings.  

The following notation is used in the performance diagrams: 

0

100

200

300

400

500

0 0.5 1 1.5 2

tim
e
, 
s

DB size, GB

Q1-Cold
SAQ-naive

SAQ-GCT

D2RQ

D2RQ-dftl

0

100

200

300

400

500

0 0.5 1 1.5 2

ti
m

e
, 
s

DB size, GB

Q1-Warm SAQ-naive

SAQ-GCT

D2RQ

D2RQ-dftl

 a) cold b) warm 

Fig. 4. Execution times for Q1 up to 1.8 GB database 

 

0

0.1

0.2

0.3

0.4

0.5

0 0.5 1 1.5 2

ti
m

e
, 
s

DB size, GB 

Q2-Cold SAQ-naive SAQ-GCT

D2RQ D2RQ-dftl

Virtuoso Virtuoso-dftl

0

0.0025

0.005

0.0075

0.01

0 0.5 1 1.5 2

ti
m

e
. s

DB size, GB

Q2-Warm
SAQ-naive SAQ-GCT

D2RQ D2RQ-dftl

Virtuoso Virtuoso-dftl

 a) cold b) warm 

Fig. 5. Execution times for Q2 up to 1.8 GB database 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.5 1 1.5 2

ti
m

e
, 
s

DB size, GB

Q3-Cold SAQ-naive

SAQ-GCT

D2RQ

D2RQ-dftl

Virtuoso

Virtuoso-dftl

0

0.005

0.01

0.015

0.02

0 0.5 1 1.5 2

ti
m

e
, 
s

DB size, GB

Q3-Warm
SAQ-naive SAQ-GCT

D2RQ D2RQ-dftl

Virtuoso Virtuoso-dftl

 a) cold b) warm 

Fig. 6. Execution times for Q3 up to 1.8 GB database 

 

0

10

20

30

0 0.5 1 1.5 2

ti
m

e
, 
s

DB size, GB

Q4-Cold

SAQ-naive SAQ-GCT

D2RQ D2RQ-dftl

Virtuoso Virtuoso-dftl

0

2

4

6

8

10

12

0 0.5 1 1.5 2

ti
m

e
, 
s

DB size, GB

Q4-Warm

SAQ-naive

SAQ-GCT

D2RQ

D2RQ-dftl

Virtuoso

Virtuoso-dftl

 a) cold b) warm 

Fig. 7. Execution times for Q4 up to 1.8 GB database 

 

SSWS 2011

54



 Virtuoso: Virtuoso RDF Views configured with the SAQ mappings. 

 Virtuoso-dflt: Virtuoso RDF Views configured with the system default mappings. 

 D2RQ: D2RQ configured with the SAQ mappings. 

 D2RQ-dflt: D2RQ configured with the system default mappings 

 SAQ-naive: SAQ without GCT 

 SAQ-GCT: SAQ with GCT 

In all cases the time spent in executing the query by the relational database 

followed by post-processing is measured, thus not including the time for preparing the 

SPARQL query by the respective system. The cold execution measurements were 

made immediately after flushing the buffer pool, while the warm ones were made by 

re-executing the query immediately after a cold query was run. The cold execution 

times include reading data from disk and SQL query optimization in the DBMS 

server. Since the back-end DBMS has a statement cache a same SQL query executed 

twice will be optimized the first time it is received. Therefore, the warm executions 

do not include back-end DBMS query optimization time. 

 Table 1 Speed-up of SAQ-GCT compared to other approaches 

 

The results from the measurements are presented in Fig. 4-7. The figures show the 

execution times for Q1, Q2, Q3, and Q4 while scaling the generated Berlin 

benchmark dataset from 10M to 100M [1][2], which corresponds to scaling the 

relational database from 312 MB to 1.8 GB. The number of RDF triples in the RD-

view varied from 3 949 935 to 38 771 340. 

Table 1 summarizes the speed-up of the different approaches for Q1-Q4 compared 

to SAQ-GCT. In particular, the SAQ-naive column shows the speed-up of GCT.  

Q1  

system SAQ-

GCT 

SAQ-

naive 

D2RQ D2RQ-dftl Virtuoso Virtuoso-

dftl 

cold 1 1.65 2 ~ 2.2 >8 hours >8hours 

warm 1 1.6 2 ~ 2.2 >8hours >8hours 

SQL 

queries 

1 11 11 13 >1000 >1000 

Q2  

cold 1 1.3 - 1.5 3.5 - 4 3.5 - 4 11.4 - 12.4 11 - 12 

warm 1 2.2 - 3.2 3 - 4.5 3 - 4.5 2.3 - 3.5 4 - 6 

SQL 

queries 

1 10 4 4 11 18 

Q3 

cold 1 1.2 - 1.3 4.2 - 5 4 - 5.5 6.6 - 9 11 - 480 

warm 1 2.5 - 3 8 - 9.7 13 - 14 5.3 - 5.7 15 - 380 

SQL 

queries 

1 6 6 8 9 12 

Q4 

cold 1 1.2 - 1.3 1.2 - 1.5 1.2 - 2.8 28 - 800 100 - 3000 

warm 1 1.3 1.6 - 2 2 30 - 2200 120 - 8000 

SQL 

queries 

1 6 6 8 >1000 >1000 
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The performance of SAQ-GCT for simple unbound-property queries is better than 

all compared implementations. Furthermore, GCT always improves performance 

substantially (20-65%) for queries to cold databases, where the execution time is 

dominated by disk accesses on the database server. For the queries Q2 and Q3, which 

select a single row from the buffer pool in a warm database, the improvement is even 

better (220-320%). The reason is that without GCT more SQL requests are sent to the 

server and therefore the communication overhead dominates when the server time is 

insignificant.  

To analyze how the other systems process unbound-property queries we measured 

their performance and investigated what SQL queries were sent to the relational 

database.  For D2RQ we used the profiling tool of MS SQL Server 2008 to obtain the 

SQL queries sent to the DBMS. Normally D2RQ sends exactly the same SQL queries 

as SAQ-naive so GCT is not used. For Q2 D2RQ makes a special optimization when 

the subject of a triple pattern is a constant URI so fewer queries are sent.  

Virtuoso RDF Views translates unbound-property queries to SQL using an 

unknown algorithm [7][8]. The debug logging of Virtuoso was used to investigate 

what SQL queries were sent to the relational database. For Q2 and Q3 Virtuoso also 

sends exactly the same queries as SAQ-naive plus a number of additional queries.  

For the non-selective queries Q1 and Q4 more than 1000 additional SQL queries were 

sent and the processing did not scale for large databases.  

6 Related Work 

Virtuoso RDF Views [7][8] and D2RQ [3][4][5] are other systems that allow mapping 

of relational tables and views into RDF to make them queryable by SPARQL. These 

systems implement compilers that translate SPARQL directly to SQL. By contrast, 

SAQ first generates Datalog queries to a declarative RD-view of the relational 

database, and then transforms the SPARQL queries to SQL based on logical 

transformations. We have shown that the particular query transformation GCT 

significantly improves performance for unbound-property queries.  

We did not find any publication of how D2RQ compiles unbound-property 

SPARQL queries into SQL. The documentation for Virtuoso is very limited [7][8]. 

However, by using the profiling tool of the DBMS and the debug logging of Virtuoso 

we were able to analyze what queries were actually sent to the DBMS, showing that 

neither of those systems uses anything similar to GCT. SquirrelRDF also allows 

SPARQL queries to relational tables, but does not support unbound-property 

SPARQL queries [19] [20]. 

Work on optimizing disjunctive database queries in general is described in 

[6][11][13]. The closest work to GCT is the combinatorial algorithm [13], which 

merges disjuncts with common sub-expressions in general disjunctive logical 

expression in order to avoid repeated evaluation of the same predicate on the same 

tuple. By contrast, the purpose of GCT is to group in a DNF predicate query 

fragments that can be translated to SQL, and therefore the simpler linear GCT 

algorithm can be used.  
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The idea of bypass evaluation of disjunctive queries in [6][11] is based on 

implementing specialized operators that produce two output streams: the true-stream 

of the tuples that fulfill the operator‟s predicate and the false-stream of the tuples that 

do not match. The main profit of the technique of bypass evaluation is in eliminating 

duplicates by avoiding unnecessary join operators. The purpose of GCT is not 

duplicate elimination, but to rewrite complex disjunctive queries for faster execution. 

7 Conclusions  

We have presented an approach to optimize simple unbound-property SPARQL 

queries to RDF views over back-end relational databases in a system called SAQ for 

querying and archiving relational databases as RDF. Simple unbound-property 

queries retrieve dynamic sets of properties for given subjects, which is important for 

archiving selected parts of a database with SPARQL. Such queries are optimized by 

the presented GCT (Group Common Terms) query transformation rule, which groups 

those common terms from a DNF predicate that can be translated to SQL.  

By using data from the Berlin SPARQL benchmark, GCT was shown to improve 

query execution time compared to naïve processing. Compared to not using GCT, it 

reduces the number of SQL queries to execute and retrieves data in relational row 

order rather than column order. The performance of SAQ was compared to other 

systems that support SPARQL queries to views of existing relational databases. It was 

shown experimentally that SAQ with GCT performs better than those systems, since 

they do not use any similar transformation strategy. 

Future work includes investigating the impact of GCT and other rewrite rules on 

the performance of other kinds of queries, such as queries with multiple unbound-

property triple patterns and other kinds of archival queries. 
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Abstract. Conjunctive query answering is a key reasoning service for
many ontology-based applications. With the advent of lightweight on-
tology languages, such as OWL 2 QL, several query answering systems
have been proposed which compute the so called UCQ rewriting of a
given query. It is often the case in realistic scenarios, that users refine
their original queries, by e.g., extending them with new constraints and
making them more precise. To the best of our knowledge, in such cases, all
OWL 2 QL systems would need to recompute the rewriting of the refined
query from scratch. In this paper we study the problem of computing the
rewriting of the refined query by ‘extending’ the pre-computed rewriting
and avoiding re-computation. We study the problem from a theoretical
point of view and present a practical algorithm. Finally, we evaluate our
implementation experimentally by comparing it against many state-of-
the-art query rewriting systems, obtaining encouraging results.

1 Introduction

A key application of OWL ontologies is ontology-based data access (OBDA)
[15], where an ontology is used to support query answering against distributed
and/or heterogeneous data sources. A typical scenario would involve the use of
an OWL ontology to answer conjunctive queries over RDF datasets. Due to the
high complexity of answering conjunctive queries over OWL 2 DL ontologies
[11, 6], prominent languages such as OWL 2 QL have been developed. OWL
2 QL (a well-known OWL 2 profile3) is based on the well-known Description
Logic (DL) DL-LiteR [3, 1]. DL-LiteR is a member of the DL-Lite family [3, 1],
a family of ‘lightweight’ ontology languages specifically designed to feature low
theoretical complexity, and hence imply the existence of efficient query answering
algorithms.

Query answering in the DL-Lite family is usually performed via a technique
called query rewriting. According to this technique, given a query and a DL-
Lite ontology, the query is ‘rewritten’ into a set of queries such that, the union
3 http://www.w3.org/TR/owl2-profiles/
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of the answers of the queries in the set over the input data and by discarding
the input ontology is equal to the answers of the original query over the data
and the ontology. In recent years, query rewriting over DL-Lite ontologies has
drawn significant attention, and several different algorithms and systems have
been proposed [3, 13, 4, 16].

Quite often in realistic data-access scenarios, users do not immediately ask
the query that they want. More precisely, as has been shown in the Web literature
[9, 8, 12], users usually first ask some ‘general’ query and then, according to
the results they get back, refine it by adding further constraints, making their
request more specific each time. Consequently, the actual (final) query might only
be known after several refinements of the initial one. In a different (Semantic
Web) motivating scenario, in order to assist users in constructing their queries,
iterative and incremental techniques have also been proposed [18, 5, 17]. However,
to the best of our knowledge, none of the query rewriting approaches that have
been proposed in the literature is designed to work well in such scenarios. More
precisely, in such cases all algorithms will (re)compute the entire rewriting of
each of the refined queries from scratch.

In the current paper we study the following problem: Given a DL-LiteR on-
tology, a query and its rewriting (computed previously), and a new constraint to
be added to the query, compute the rewriting of the new query by ‘extending’
the input rewriting and avoid computing it from scratch through the standard
algorithms. First, we study the problem at a theoretical level and investigate
whether it is possible to compute the rewriting of the extended query given any
input rewriting. Unfortunately, the answer is negative and we explain how op-
timisation techniques employed by nearly all modern systems might compute
rewritings that are not suitable for our task. Then, we present an algorithm for
computing query rewritings under query extensions. Our algorithm is based on
the well-known PerfectRef algorithm [3], which in its original version did not in-
clude any optimisations and hence is suitable for our purposes. For our algorithm
to behave well we propose several optimisations that are specific to our case. Fi-
nally, we have implemented the algorithm and have conducted an experimental
evaluation using the evaluation framework proposed in [13]. We have compared
our techniques with many of the available query rewriting systems and our first
results are encouraging given our preliminary implementation.

Our problem is also highly relevant to the field of databases, where it has
been studied under the term view adaptation [7, 10]—that is, computing the
materialisation of a re-defined materialised view. However, view adaptation has
not been studied in the presence of database constraints—that is, under the
presence of logical axioms. We also feel that this new approach and view of
query rewriting opens an interesting line of research for scalable OBDA.

2 Preliminaries

Description Logics We assume that the reader is familiar with the basics of DL
syntax, semantics and standard reasoning problems [2]. We next recapitulate
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the syntax of DL-LiteR [3] a prominent DL language that consists of the logical
underpinnings of the QL profile of OWL 23 and is widely used in ontology-based
data access.

Let C, R, and I be countable, pairwise disjoint sets of atomic concepts, atomic
roles, and individuals. A DL-LiteR-role is either an atomic role P or its inverse
P−. DL-LiteR-concepts are defined inductively by the following grammar, where
A ∈ C and R is a DL-LiteR-role:

B := A | ∃R

A DL-LiteR-TBox is a finite set of axioms of the form B1 v B2 or B1 uB2 v ⊥,
with B(i) DL-LiteR-concepts and ⊥ the bottom concept that is empty in all
interpretations, or of the form R1 v R2 with R(i) DL-LiteR-roles. An ABox is a
finite set of assertions of the form A(c) or P (c, d) for A ∈ C, P ∈ R and c, d ∈ I.
A DL-LiteR-ontology O = T ∪ A consists of a TBox and an ABox.

Queries We use standard notions of (function-free) term and variable. A concept
atom is of the form A(t) with A an atomic concept and t a term. A role atom
is of the form R(t, t′) for R an atomic role, and t, t′ terms. A conjunctive query
(CQ) q is an expression of the form:

{~x | {α1, . . . , αm}}

where each αi is a concept or role atom and ~x = (x1, . . . , xn) is a tuple of
variables called the distinguished (or answer) variables, each appearing in at
least some atom αi. The remaining variables of q are called undistinguished.
We use var(q) to denote all the variables appearing in q and avar(q) to denote
all its distinguished variables. Finally, a variable that is either distinguished or
appears in at least two different atoms αi, αj with i 6= j in q is called bound,
otherwise it is called unbound. We often abuse notation and use q to refer to the
set of its atoms, i.e., {α1, . . . , αm}. For the rest of the paper, and without loss
of generality, we will asume that queries are connected [6]. Finally, a union of
conjunctive queries (UCQ) is a set of conjunctive queries.

A certain answer to a CQ q w.r.t. O is a tuple ~c = (c1, . . . , cn) of individu-
als s.t. O entails the FOL formula obtained by building the conjunction of all
atoms αi in q, replacing each distinguished variable xj with cj and existentially
quantifying over undistinguished variables. We denote with cert(q,O) the set of
all certain answers to q w.r.t. O. Given q1, q2 with distinguished variables ~x and
~y, we say that q2 subsumes q1, if there exists a substitution θ from the variables
of q2 to the variables of q1 such that the set [{ans(~y)} ∪ q2]θ is a subset of the
set {ans(~x)} ∪ q1, where ans is in each case a predicate of the same arity as ~x
(~y) not appearing in q1 (q2). Finally, q1 is equivalent to q2 if they subsume each
other.

Query Answering in DL-LiteR Query answering in DL-LiteR is performed with
a technique known as query rewriting which, given a DL-LiteR-TBox T and
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query q, computes a UCQ u, called a UCQ rewriting for q, T , with the following
property: for each ABox A s.t. O = T ∪ A is consistent, the following holds:

cert(q,O) =
∪

q′∈u

cert(q′,A).

For a DL-LiteR-TBox, a UCQ rewriting u for q, T can be computed using the
perfect reformulation algorithm (PerfectRef) described in [3]. The algorithm ap-
plies exhaustively a reformulation and a condensation step that generate new
CQs; the process terminates when no new CQ is generated.

In the reformulation step the algorithm picks a CQ q, an atom in the CQ
α ∈ q and an axiom I ∈ T and applies the axiom on the atom α of q replacing
it with a new atom and hence, creating a new CQ. This is performed with the
function gr(α, I), that takes as input an atom α and an axiom I ∈ T and returns
a new atom. For a CQ q, α ∈ q and I ∈ T , gr(α, I) is defined as follows:

– if α = A(x) and
i) I = B v A, then gr(α, I) = B(x);
ii) I = ∃P v A, then gr(α, I) = P (x, y) for y a new variable in q;
iii) I = ∃P− v A, then gr(α, I) = P (y, x) for y a new variable in q.

– if g = P (x, z), z is unbound in q and
i) I = A v ∃P , then gr(α, I) = A(x);
ii) I = ∃S v ∃P , then gr(α, I) = S(x, y) for y a new variable in q;
iii) I = ∃S− v ∃P , then gr(α, I) = S(y, x), for y a new variable in q.

– if g = P (z, x), with z unbound, then
i) I = A v ∃P−, then gr(α, I) = A(x);
ii) I = ∃S v ∃P−, then gr(α, I) = S(x, y), where y is new in q;
iii) I = ∃S− v ∃P−, then gr(α, I) = S(y, x), where y is new in q.

– if g = P (x, y) and
i) I = S v P or I = S− v P−, then gr(α, I) = S(x, y);
ii) I = S v P− or I = S− v P , then gr(α, I) = S(y, x).

If for some axiom I and some atom α one of the above conditions holds, then
we say that I is applicable to α, and applying I to some α in some CQ q creates
a new CQ of the form q[α/gr(α, I)]—that is, the new CQ contains the atom
gr(α, I) instead of α.

In the condensation step a new query is generated from a query q by ap-
plying to q the most general unifier between two atoms α1, α2 of its body; the
application of the condensation step is denoted by reduce(q, α1, α2).

3 Query Rewriting Under Query Extensions

In this section we present the design and implementation of an algorithm for
computing the UCQ rewriting of a refined query from the UCQ rewriting of the
initial query by avoiding the computation of the UCQ rewriting of the refined
query from scratch as in any of the standard query rewriting algorithms. In the
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current paper we focus on refinements that involve additions of new atoms to
the queries, which we call extensions. We leave other types of refinements like
deletion of atoms or changes in the set of distinguished variables for future work.

In the following, we first study the problem at a theoretical level and give
examples that highlight issues and difficulties and which also explain several of
its technical parts; then, we present the algorithm in detail.

3.1 Algorithm Design

Example 1. Consider the following TBox about an academic domain and the
CQ which retrieves all individuals that are students:

T = {GradStudent v Student,TennisPlayer v Athlete}
q = {x | {Student(x)}}

The set u = {q, q1}, where q1 = {x | {GradStudent(x)}} is a UCQ rewriting for
q, T and can be computed by any state-of-the-art query rewriting algorithm.

Suppose, now that a user wants to extend the initial query and retrieve
only those students that are also athletes—that is, issue the new query q′ =
{x | {Student(x),Athlete(x)}}. It can be easily checked that the UCQ u′ =
{q′, q′1, q′2, q′3}, with q′i defined as follows, is a UCQ rewriting for q′, T :

q′1 = {x | {Student(x), TennisPlayer(x)}},
q′2 = {x | {GradStudent(x), Athlete(x)}},
q′3 = {x | {GradStudent(x),TennisPlayer(x)}}

which can again be computed using any rewriting algorithm for q′, T . ♦

Although u′ from the above example can be computed by any state-of-the-art
query rewriting algorithm and system, when such an algorithm is applied over
q′ it will ‘repeat’ all the work previously done for the atom Student(x), when it
computed the UCQ rewriting for query q. Our motivation is that since all the
work for q has already been done, perhaps it is possible to compute the UCQ
rewriting of the extended query, by computing a UCQ rewriting only for the new
atom (i.e., for the atom Athlete(x)) and then, by appropriately ‘combining’ the
two rewritings. Using this approach we will perform only the additional work
left to compute a UCQ rewriting for the extended query, modulo the overhead
for combining the rewritings which we anticipate to be small.

To design a correct algorithm several important technical issues need to be
resolved. To mention a few, firstly, we need to figure out what is the appropriate
CQ of the new atom for which a UCQ rewriting should be computed (especially
regarding the choice of distinguished variable) while then, how to appropriately
combine the two UCQ rewritings.

Definition 1. Let q be a CQ and α an atom containing at least a variable of q.
The atom-query for α w.r.t. q is the CQ defined as follows qα := {var(α)∩var(q) |
{α}}.
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The distinguished variables of the atom-query for α w.r.t. q are all the vari-
ables of α that also appear in q. The intuition is that, in the extended query
(q∪{α}) these variables are bound and hence, when computing the UCQ rewrit-
ing for α in isolation, these should be treated as such. In our previous example,
the atom-query for α w.r.t. q is the CQ qα = {x | {Athlete(x)}} and its UCQ
rewriting is the UCQ uα = {qα, q′α}, where q′α = {x | {TennisPlayer(x)}}.

Having computed a UCQ rewriting uα for the atom-query, we can use the
two UCQs to compute a UCQ rewriting for the extended query. At this point
it is important to see how the two rewritings should be combined. The obvious
choice is to take the pair-wise union of the CQs for which there is an overlap
between their variables. More precisely, for u and uα two UCQ rewritings and for
q1 ∈ u, q2 ∈ uα such that avar(q2) ⊆ var(q1), a CQ of the form {avar(q) | q1 ∪ q2}
can be constructed. Again, the intuition behind the condition on the variables is
that there must exist ‘join’-points between the queries that are unified. Indeed,
one can construct the UCQ rewriting u′ for q′, T from Example 1 by following
this procedure: from queries q1 ∈ u and q′α ∈ uα we can obtain the CQ q′3,
while from q1 ∈ u and qα ∈ uα we can obtain the CQ q′2. However, as the
following example shows this operation between the UCQs is not enough to give
a complete UCQ rewriting for the extended query.

Example 2. Consider the following TBox and CQ:

T = {A v ∃R, R v S, ∃S− v B} q = {x | {R(x, y)}}.

The set u = {q, q1}, where q1 = {x | {A(x)}} is a UCQ rewriting for q, T .
Consider now the addition of the atom α = B(y). The atom-query for α w.r.t.
q is the query qα = {y | B(y)} and the UCQ uα = {qα, q1

α, q2
α}, where q1

α = {y |
{S(z, y)}} and q2

α = {y | {R(z, y)}}, is a UCQ rewriting for qα, T .
Using the procedure described above we can compute the UCQ u∪ := {q ∪

qα, q ∪ q1
α, q ∪ q2

α}, which is indeed a sound UCQ rewriting for the query q+ :=
q∪{α}. However, it is not complete; more precisely, any complete UCQ rewriting
for q+, T must contain the query {x | {A(x)}}; but, for all CQs q′ ∈ uα avar(q′) *
var(q1), hence q1 is never used. ♦

In the previous example we observe that the missing query (q1) does exist in
the UCQ rewriting of the initial query, but it cannot be added to the target
UCQ using the union operation. This suggests that there is probably another
type of interaction between the UCQ rewritings that we should consider. More
precisely, we observe that apart from points where the UCQ rewritings should
be unified, there exist points where the UCQs should be ‘merged’. For example,
in the previous case we can observe that the formula implied by the CQ q2

α ∈ uα

is in some sense already ‘contained in’ q ∈ u. This represents a point where
the two UCQ rewritings actually ‘merge’. Hence, the construction of the UCQ
rewriting of the extended query should proceed by copying q and all the CQs
that are generated in the UCQ of the initial query ‘after’ q. Thus, in our previous
example, q1 should be copied (as is) to the computed UCQ. This in turn implies
that the rewriting algorithm used to compute the UCQ rewriting of the initial
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query should keep track of the dependencies between the generated queries. As
we will show in the next section, the aforementioned union (join) and merge
operations are the two operations used to compute a UCQ rewriting of the
extended query.

Another important open question is whether the above process can be per-
formed using any computed UCQ rewriting for the initial query. Unfortunately,
as the following example shows, this is not always possible. The problem is that
optimisation techniques like subsumption checking, employed by many modern
state-of-the-art query rewriting systems, can prune queries that are not going to
be redundant in UCQ rewritings of the extended query.

Example 3. Consider the following TBox and CQ:

T = {A v ∃R} q = {x | {A(x), R(x, y)}}.

The UCQ u := {q, q1}, where q1 = {x | {A(x)}}, is a UCQ rewriting for q, T .
However, q1 subsumes q, hence q can be removed and the UCQ {q1} is also a
UCQ rewriting for q, T . Most modern systems are likely to return the latter
UCQ rewriting.

Now suppose that we extend the original query by adding the new atom
B(y). Then, the new query is of the form q+ = {x | {A(x), R(x, y), B(y)}} and
its UCQ rewriting consists of the set {q+}. Unfortunately, it is not possible to
compute this UCQ rewriting from the UCQ {q1}. Intuitively, the problem is that
query q1, which is used to prune q, is no longer generated in the UCQ rewriting of
the extended query; hence, in that context q is not redundant. A UCQ rewriting
for q+, T can, however, be generated from u (the UCQ without the subsumed
query removed) and a UCQ rewriting for qα = {y | {B(y)}}, which consists of
the UCQ {qα}. More precisely, from the union of q ∈ u and qα ∈ uα one obtains
the query q+. ♦

The previous example suggests that we should use an algorithm that does
not employ such optimisation techniques. One such algorithm is the original
PerfectRef algorithm. However, the absence of optimisation techniques compro-
mises the practicality of the approach. More precisely, as has been shown by
experimental evaluations [14], systems that do not use optimisations tend to
compute very large UCQ rewritings. Hence, performing a pair-wise union of two
large UCQ rewritings can be impractical. However, our intuition is that on the
one hand, the UCQ rewriting of the atom-query is going to be rather small,
while on the other hand, the two UCQ rewritings would have many ‘merge’ and
few ‘join’ points, as the following example shows.

Example 4. Consider the following TBox and CQ:

T = {An v An−1, . . . , A2 v A1, A1 v B,A1 v C} q = {x | {B(x)}}.

The set u = {q, q1, . . . , qn} where qi is a CQ of the form {x | {Ai(x)}} is
a UCQ rewriting for q, T . Now suppose that we extend the query with atom
C(x) obtaining the new CQ q+ = {x | {B(x), C(x)}}. Following our previous
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discussion, we can compute a UCQ rewriting for q+, T by combining u with a
UCQ rewriting for qα = {x | {C(x)}} w.r.t. T , which in this case is the UCQ
uα = {qα, q1, . . . , qn}. However, after computing the union of q ∈ u and qα ∈ uα

we immediately see that q1 appears in both UCQ rewritings. Hence, at this point
the two UCQs merge and all queries qi with 1 ≤ i ≤ n can be copied to the final
UCQ and can be discarded from further processing. ♦

Concluding our analysis and design, we present yet another technical issue
in the construction of a correct algorithm.

Example 5. Consider the following TBox and CQ:

T = {A v ∃R} q = {x | {R(x, y), R(z, y)}}.

The set u = {q, q1, q2}, where q1 = {x | {R(x, y)}} and q2 = {x | {A(x)}} is
a UCQ rewriting for q, T . Consider now the addition of the atom α = B(z).
The atom-query for α w.r.t. q is the query qα := {z | {B(z)}} and its UCQ
rewriting is uα := {qα}. We can observe that the only query with which qα joins
is the query q, however, a UCQ rewriting for q ∪ {α} must contain the queries
q′1 = {x | {R(x, y), B(x)}} and q′2 = {x | {A(x), B(x)}}. The issue is that query
q1 is produced from q by unifying R(x, y) and R(z, y) through a condensation
step, and z, the common variable, is renamed to x. ♦

The above example suggests that in order to be able to compute a UCQ rewriting
of an extended query from the UCQ rewriting of an initial one, the algorithm
used to create the UCQ rewriting of the initial one should keep track of variable
renamings preformed during the condensation step. If this is the case, then in the
previous example, qα can be joined with q1 and q2 in order to produce queries
q′1 and q′2.

3.2 The UCQ Extension Algorithm

As detailed in the previous section, in order to produce a correct UCQ rewriting
for an extended query, first and foremost, the algorithm that is used to compute
the UCQ rewriting of the initial query must, on the one hand keep track of the
dependencies between the generated queries while on the other hand, keep track
of variable changes in the condensation step.

These changes are detailed in Algorithm 1, which presents ex-PerfectRef,
an extended version of the standard PerfectRef algorithm. Unlike PerfectRef,
ex-PerfectRef maintains a binary-relation G over queries. A pair 〈q, q′〉 is in
G if q′ is generated from q by an application of either a single reformulation
or condensation step. Since G can contain cycles, ex-PerfectRef also extracts
and returns a hierarchy out of the computed dependency relation—that is, for
each cycle a representative query is selected and then a transitively-reduced
strict partial order of all the representative elements is constructed. The formal
definition of the hierarchy function is given next.

The function hierarchy. Let U be a set, let K ⊆ U × U be a binary relation
over U and let S be a subset of U .
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Algorithm 1 ex-PerfectRef(q, T )
Input: A CQ q and a DL-LiteR-TBox T

1: Initialise a UCQ u := {q}
2: Initialise a binary relation G := ∅
3: Initialise a mapping µ from CQs to unifications and set µ(q) := ∅
4: repeat
5: u′ := u
6: for all q ∈ u′ do
7: for all α ∈ q do
8: for all PI I ∈ T do
9: if I is applicable to α then

10: q′ := q[α/gr(α, I)]
11: µ(q′) := µ(q)
12: u := u ∪ {q′};
13: G := G ∪ {〈q, q′〉}
14: end if
15: end for
16: end for
17: for all α1, α2 in q do
18: if there is a most general unifier σ for α1 and α2 then
19: q′ := reduce(q, α1, α2)
20: µ(q′) := µ(q) ∪ {σ}
21: u := u ∪ {q′}
22: G := G ∪ {〈q, q′〉}
23: end if
24: end for
25: end for
26: until u′ = u
27: if G = ∅ then
28: return (hierarchy(u, {〈q, {var(q) | {}}〉}), µ)
29: end if
30: return (hierarchy(u, G), µ)

– D ∈ U is reachable in K from C ∈ U , written C  K D, if E0, . . . , En with
n ≥ 0 exist where E0 = C, En = D and 〈Ei, Ei+1〉 ∈ K for each 0 ≤ i < n.4

– A hierarchy of S w.r.t. K is a pair 〈H, ρ〉 defined as follows:
• Let V ⊆ S be a minimal (w.r.t. set inclusion) set such that, it con-

tains exactly one element from each set {C | C, D ∈ S, C  K D and
D  K C}. Then, H is the reflexive–transitive reduction of the relation
{〈C,D〉 ∈ V × V | C  K D}.

• ρ : V → 2S is the function on V such that D ∈ ρ(C) if and only if
C  K D and D  K C.

– hierarchy(S, K) is a function that returns one arbitrarily chosen but fixed
hierarchy of S w.r.t. K.

4 Note that, according to this definition, each C ∈ U is reachable from itself.
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Algorithm 2 ExtendRewriting(q, α, T , 〈H, ρ〉, µ)
Input: A CQ q, an atom α, a DL-LiteR-TBox T and a hierarchy 〈H, ρ〉 and
mapping µ computed using Algorithm 1.

1: uα := PerfectRef({var(α) ∩ var(q) | {α}}, T )
2: Initialise a queue Q with Q := {q0}, where q0 is the root in H
3: u := ∅
4: while Q 6= ∅ do
5: Remove the head qH from Q
6: for all qeq ∈ ρ(qH) do
7: for all qα ∈ uα do
8: if isContainedIn(qα, qeq) then
9: for all q′′ such that qeq  H q′′ do

10: Add q′′ and all CQs in ρ(q′′) to u
11: end for
12: else
13: µeq := µ(qeq)
14: if containsAllVars(qα, qeq, µeq) then
15: Add {avar(q) | qeq ∪ (qα)µeq} to u
16: Add to the end of Q each q′′ such that 〈qeq, q

′′〉 ∈ H
17: end if
18: end if
19: end for
20: end for
21: end while
22: u := u \ {{var(q) | {}}}
23: return removeSubsumed(u)

Finally, the algorithm uses a mapping µ from CQs to variable mappings in
order to keep track of the variable unifications that are conducted during the
condensation step (Line 20). These are also copied to newly created CQs in the
reformulation step (Line 11).

Having computed a UCQ rewriting for some query q and TBox T in the
form of a hierarchy 〈H, ρ〉 using Algorithm 1, and tracked variable unifications
using µ, one can compute a UCQ rewriting for any extension of query q with
an atom α. The algorithm uses the following functions to check that the two
UCQ rewritings should be merged or to check using the variable mappings in µ
computed by Algorithm 1 that two CQs can be joined (cf. Example 5).

The function isContainedIn. Let q, q′ be two CQs. Then, isContainedIn(q′, q)
returns true if the CQ {avar(q) | q ∪ q′} subsumes q; otherwise it returns false.
The intuition is that all atoms in q′ already exist in q.

The function containsAllVars. Let q, q′ be two CQs and µ a set of variable
mappings. Then, containsAllVars(q′, q, µ) returns true if, for each z ∈ avar(q′)
there exists x ∈ var(q) such that, when considering the mappings in µ as a
graph, we have z  µ x.
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Algorithm 2 presents the algorithm in detail. The algorithm accepts as an
input a CQ q, a new atom α, a DL-LiteR-TBox T and a hierarchy 〈H, ρ〉 and
a mapping µ computed using Algorithm 1 and it returns a UCQ for the query
{var(q) | q∪{α}}. It first computes a UCQ rewriting uα for the atom-query qα of
α w.r.t. q (Line 1). The UCQ rewriting for qα explicates all implied information
of the T about the atom α, which is essential for the correctness of the algorithm.

Having a UCQ rewriting for the initial query and the atom-query for α w.r.t.
q, the algorithm proceeds in combining the UCQs; it uses a queue Q to perform
a breadth-first search over the queries in H and either compute the union of
the queries or copy queries from the UCQ rewriting of the initial query. More
precisely, it picks a query qH from Q, a query qeq in the equivalence class ρ(qH)
and a query qα from the UCQ uα. If isContainedIn(qα, qeq) = true, then the two
UCQs merge and hence, all queries q′′ that are reachable in H from qeq and
all those queries in the equivalence class of q′′ can be added to the target UCQ
(Lines 9–11). Otherwise, the algorithm checks if the two CQs can be unified using
function containsAllVars. If the function returns true then the union of the queries
is sound, and is thus added to the target UCQ after appropriately renaming the
variables of qα if necessary; then, the successor query of qeq in H is added to Q
and the process continues. Finally, the algorithm applies subsumption checking
in order to remove all the redundant queries and return a minimal UCQ rewriting
for the extended query.

It can be shown that Algorithm 2 correctly computes a UCQ rewriting for
an extended query, given a hierarchy computed using Algorithm 1.

4 Evaluation

We have developed a prototype tool for computing the rewriting of an extended
conjunctive query based on Algorithms 2 and 1. Our implementation uses the
implementation of PerfectRef that was developed and used in the experimental
evaluation in [14].

We have compared our implementations with a number of available query
rewriting systems. More precisely, our set of tools include the aforementioned
implementation of PerfectRef,5 Requiem [14], a resolution-based rewriting algo-
rithm that uses subsumption to reduce the number of generated queries and
Rapid [4], a recently developed highly-optimised DL-LiteR UCQ rewriting algo-
rithm. For the evaluation we used the framework proposed in [14]. It consists of
nine ontologies, namely V that captures information about European history,6

P1 and P5 two hand-crafted artificial ontologies, S that models information
about European Union financial institutions, U that is a DL-LiteR version of the
well-known LUBM7 ontology and A that is an ontology capturing information
about abilities, disabilities and devices. Moreover, we also used the ontologies
P5X, UX and AX that consist of normalised versions of the ontologies P5, U
5 http://www.cs.ox.ac.uk/projects/requiem/C.zip
6 http://www.vicodi.org/
7 http://swat.cse.lehigh.edu/projects/lubm/
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Table 1. Comparison between PerfectRef and ex-PerfectRef

O Q
PerfectRef ex-PerfectRef O Q

PerfectRef ex-PerfectRef O Q
PerfectRef ex-PerfectRef

♯u t ♯u t ♯u t ♯u t ♯u t ♯u t

P1

1 2 1 2 4

S

1 6 2 6 4

V

1 15 4 15 6
2 3 2 3 5 2 202 175 202 158 2 11 9 11 9
3 7 9 7 9 3 1005 1113 1005 1109 3 72 43 72 38
4 16 21 16 24 4 1548 945 1548 1920 4 185 82 185 121
5 32 55 32 54 5 8693 8589 8693 23521 5 150 167 150 181

P5

1 14 4 14 6

U

1 5 3 5 5

A

1 783 561 783 277
2 86 32 86 40 2 286 166 286 173 2 1812 1217 1812 710
3 530 273 530 304 3 1248 479 1248 593 3 4763 1506 4763 2074
4 3476 1576 3476 2663 4 5359 1628 5359 3919 4 7251 2336 7251 5288
5 23744 26498 23744 188456 5 9220 4038 9220 14451 5 7885 347798 - -

P5X

1 14 3 14 5

UX

1 5 3 5 4

AX

1 783 335 738 269
2 86 34 86 38 2 286 187 286 154 2 1812 1249 1812 713
3 530 282 530 301 3 1248 484 1248 587 3 4763 1403 4763 2089
4 3476 1452 3476 2660 4 5358 1615 5358 3995 4 7251 2717 7251 5407
5 23744 33248 23744 195478 5 9220 4041 9220 14513 5 7885 356756 - -

and A. For each ontology, a set of five hand-crafted queries is proposed [14]. All
experiments were conducted on a MacBook Pro with a 2.66GHz processor and
4GB of RAM with a time-out of 600 seconds.

In our first experiment we compared our extended ex-PerfectRef (i.e., Algo-
rithm 1) against the standard implementation of PerfectRef. The goal is to assess
the extent to which our extensions and changes affect the performance of the
original algorithm.

Table 1 presents the results, where ♯u and t denote the size of the computed
UCQ and the execution time (in milliseconds). As can be seen from that table,
the performance of ex-PerfectRef is generally worse than that of PerfectRef. This
was not surprising due to the extensions that have been applied to the original
algorithm. This difference is relatively small in queries such as Q1–Q4, while it
is usually more acute in query Q5. Notably, for query Q5 in ontologies A and
AX, ex-PerfectRef failed to terminate within the set time-out.

In our second experiment, we evaluated Algorithms 1 and 2 against other
query rewriting algorithms. In the case of our system, we proceeded as follows: for
each of the test ontologies and for each of the queries Qi, 1 ≤ i ≤ 5 we removed
an arbitrary selected atom α to obtain a (hypothetical) initial query Qi−. Then,
we first run the method ex-PerfectRef(Qi−, T ) to compute a UCQ rewriting for
Qi−, T in the form of a hierarchy 〈H, ρ〉 together with the variable unification
mappings µ, and then run the method ExtendRewriting(Qi−, α, T , 〈H, ρ〉, µ) to
compute the UCQ rewriting for Qi, T , as detailed in Algorithm 2. Since this
process requires a query that contained at least two atoms, we did not consider
query Q1 for some ontologies.

Table 2 presents the results from our second experiment. In that table, ex-PR
refers to algorithm ex-PerfectRef executed for Qi− and T , Ref refers to Algorithm
2 without the final redundancy elimination step, while sub refers to that step
(Line 23 of Algorithm 2). Hence, ♯u⋆ and t⋆ denote the size of the computed UCQ
and the execution time (in milliseconds) for the respective code ⋆. Also P-Ref
refers to algorithm PerfectRef. Note that, after the final redundancy elimination
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Table 2. Results of Algorithms 1 and 2 compared with other UCQ rewriting systems

O Q
Algorithms 1 & 2

P-Ref Requiem Rapid
♯uex-PR ♯uRef tex-PR tRef tsub tRef+tsub tall

V

2 1 10 3 35 3 38 41 14 15 44
3 3 72 4 82 45 127 131 124 63 66
4 37 185 30 39 95 134 164 274 173 116
5 120 30 184 7 11 18 202 392 93 108

P1

2 2 2 5 2 1 3 8 4 6 10
3 3 2 5 3 0 3 8 9 11 12
4 7 2 11 3 0 3 14 31 27 17
5 16 2 30 4 1 5 35 102 69 37

P5

2 14 10 5 5 2 7 12 40 26 15
3 86 13 47 15 3 18 65 299 245 26
4 530 18 322 35 1 36 358 1328 1131 39
5 3476 32 2685 105 3 108 2793 26781 7722 104

P5X

2 14 25 7 6 7 13 20 134 152 30
3 86 79 59 17 35 52 111 630 1380 161
4 530 399 406 73 61 134 540 6327 4161 1230
5 3476 2649 2911 225 770 995 3906 342133 93234 6533

S

2 34 29 19 11 1 12 31 400 180 12
3 193 33 255 15 4 19 274 1514 1095 16
4 404 57 464 20 5 25 489 1490 1142 15
5 2296 154 2551 52 3 55 2606 28829 8202 18

U

1 24 2 10 4 0 4 14 4 11 9
2 41 18 19 10 0 10 29 427 158 9
3 180 8 161 11 1 12 173 650 256 11
4 205 59 99 51 4 55 154 2133 1234 14
5 225 59 179 19 6 25 204 6453 3307 18

UX

1 24 5 8 5 0 5 13 3 13 8
2 41 20 18 10 1 11 29 471 212 8
3 180 39 183 13 6 19 202 1169 778 20
4 205 35 105 54 3 57 162 7677 6975 17
5 225 113 215 19 30 49 264 20863 20466 33

A

1 27 52 14 80 8 88 102 676 181 20
2 783 71 305 22 7 29 334 1184 162 42
3 4763 104 2072 117 11 128 2200 1476 231 97
4 783 323 313 95 80 175 488 2774 340 179
5 4763 624 2141 262 195 457 2598 342897 576 316

AX

1 27 67 15 81 15 96 111 527 233 31
2 783 1490 356 93 648 741 1097 2210 1561 1269
3 4763 4752 11296 188 10428 10616 21921 9774 12097 2132
4 783 3355 338 153 3451 3604 3942 16608 9140 2846
5 4763 36013 11459 934 - - - - - 60492
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step, all systems returned UCQ rewritings of the same size (the same as the ones
reported in [14]) and hence the numbers are not presented.

As we can observe from the table, compared to PerfectRef, the process of
extending the UCQ rewriting of a query (column tRef+tsub) is much more efficient
than computing the UCQ rewriting of the new query from scratch (column
for PerfectRef). Even more interestingly, even when considering Algorithms 1
and 2 together (i.e., tall), the process is much more efficient than PerfectRef. In
cases of queries containing a few atoms (usually queries Q1 and Q2) and having
small rewritings (less than 30 queries), the total time is comparable, however
in queries with large UCQ rewritings and large number of atoms, Algorithms 1
and 2 combined, manage to be several times and sometimes even 1 or 2 orders
of magnitude faster than PerfectRef in computing the UCQ rewriting for Qi, T .
Such notable cases are queries Q3–Q5 in ontology P5 and P5X, all the queries
in ontology S, queries Q3-Q5 in ontology U and UX, queries Q1, Q2, Q4 and Q5
in ontology A and finally queries Q1, Q2, and Q4 in ontology AX. An intuition
behind this large improvement is that the brute-force (blind) application of the
reformulation and condensation steps of PerfectRef is bound to be inefficient and
not scale well in such cases. In our case though, Algorithm 1 first computes a
UCQ rewriting for a smaller CQ (i.e., Qi) and then Algorithm 2 performs a much
more guided breadth-first search, applying simple operations like set-union.

However, there are also two exceptions. Firstly, PerfectRef is faster in query
Q3 ontology A. The reason is that the UCQ rewriting of the ‘reduced’ query
Qi− is much larger (4763 CQs) than the UCQ rewriting of Qi (104 CQs). That
is, the extra atom in Qi helps PerfectRef stop computation earlier and compute
the small target UCQ rewriting fast, while Algorithm 2 begins the refinement
process with a large number of CQs most of which are not going to produce CQs
for Qi, T . Finally, like PerfectRef, Algorithm 2 failed to terminate in query Q5
ontology AX. The reason is that the size of the UCQ computed by the Ref part
of the algorithm, i.e., ♯uRef , is quite large and the final redundancy elimination
method fails to terminate within the set time-out.

Interestingly, a similar good behaviour for Algorithms 1 and 2 combined can
be observed even when compared to the much more optimised system Requiem.
There are a few cases that Requiem is more efficient, especially for ontology A
which, as mentioned above, seems to be problematic for Algorithm 2, however,
we can observe that in most cases the behaviour of Algorithms 1 and 2 is much
more robust and scales better in queries with a UCQ rewriting of increasing
size. Again, this is due to the guided nature of the refinement algorithm, while
Requiem, although it uses subsumption internally to remove redundant queries,
applies the resolution rule in an unguided brute-force way.

Finally, even when compared to Rapid, a highly optimised and DL-LiteR-
tuned algorithm, although Rapid is in most cases faster than the overall execution
time of our strategy, there are several cases that the performance of the two
algorithms is comparable. Actually, in ontology P5X and ontology A query 2, it
manages to be notably faster than Rapid. Furthermore, when restricted only to
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the refinement step (Algorithm 2), algorithm manages to be even closer to the
performance of Rapid.

5 Conclusion

In the current paper we studied the following problem: Given a query, a UCQ
rewriting for the query and some atom, can we compute a UCQ rewriting for
the query extended with the additional atom by “extending” the input UCQ
rewriting without computing a UCQ rewriting of the new query from scratch?

We studied the problem at a theoretical level and investigated whether it is
possible to compute such a UCQ rewriting from any given UCQ rewriting for the
initial query. Our results showed that this is not possible in general, especially
when optimisations are used to prune queries from the UCQ rewriting of the ini-
tial query. Hence, we designed our refinement algorithm by using the PerfectRef
algorithm, which, in its original version, did not include any optimisations. Al-
though it is commonly accepted that an unoptimised rewriting algorithm would
compute large UCQ rewritings, and hence, compromise the practicality of our
method, we continued by developing new optimisation strategies and a careful
strategy for computing the refinement. Subsequently, we implemented the pro-
posed algorithm and evaluated it experimentally, obtaining several encouraging
and interesting results. On the one hand, the refinement process is much more
efficient than computing the UCQ rewriting of the extended query from scratch
using most (if not all) state-of-the-art rewriting algorithms. On the other hand,
even when considering the overall time of computing the UCQ rewriting of the
initial query together with the time for the refinement, the method was more
efficient and robust compared to PerfectRef and Requiem, the latter of which
also employs several optimisations.

There are many interesting challenges for future work. Firstly, one could
study a similar problem under different types of query refinements, such as,
after removing an atom or after adding and/or removing distinguished variables.
Secondly, our initial relatively naive and preliminary algorithm is definitely open
for further optimisations. More precisely, it is currently unknown whether some
redundant queries from the UCQ rewriting of the initial query can actually be
removed. Finally, investigating whether such an approach can also be applied to
optimised systems such as Rapid or to more expressive DLs like EL and ELHI
using systems such as Requiem are also interesting issues.
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Abstract. In the last years, reasoning over very large ontologies became
more and more important. In our contribution, we propose a reasoning in-
frastructure, which can perform instance checking and instance retrieval
over ontologies with semi-expressive terminological knowledge and large
assertional parts.
The key idea is to 1) use modularizations of the assertional part, 2) use
some kind of intermediate structure to find similarities between individ-
ual modules, and 3) store information efficiently on external memory.
For evaluation purposes, experiments on benchmark and real world on-
tologies were carried out. We show that our reasoning infrastructure can
handle up to 1 billion ABox assertions. To the best of our knowledge
this is the first system to provide sound and complete reasoning over
SHI ontologies with such a huge number of assertions.

1 Introduction

The Semantic Web is intended to bring structure to the meaningful content of
web pages and to create an accessible environment for software agents. Ontolo-
gies are one way of representing the knowledge of these agents. The idea to
represent datasets on the Internet with ontologies was first widely made public
in [BLHL01]. Since then the Semantic Web became a widely used buzzword.

There is increased interest in the development of Semantic Web applications,
e.g. digital libraries, community management, and health-care systems. As the
Semantic Web evolves, the amount of data available in these applications is grow-
ing with an incredible speed. Since the size of the Semantic Web is expected to
further grow in the coming years, scalability and performance of Semantic Web
systems become increasingly important. Usually, such systems deal with infor-
mation described in description-logic based ontology languages such as OWL
[HKP+09], and provide services for storing, querying, and updating large num-
bers of facts.

Decidability results for many expressive description logics and for query answer-
ing over these description logics have been shown. However, early tableau-based
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description logic reasoning systems, e.g. Racer [HMW04] and Pellet [SPG+07],
do not perform well with large ontologies since the implementation of tableau
algorithms is built based on efficient main memory data structures.

There exists a lot of research to identify tractable description logics. For example
the descriptions logic EL and extensions up to EL++, introduced in [BBL08],
admit reasoning in polynomial time for classification and instance checking. An-
other lightweight description logic (family) is DL-LITE [CDGL+05]. DL-LITE
allows the use of relational database management systems for query answering.
Another tractable fragment is the rule-based language OWL-R, introduced in
[HKP+09]. All tractable fragments have in common that the set of constructors
in the ontology language is restricted in order to obtain efficient reasoning algo-
rithms for query answering. However, in practical applications, users often need
more expressive languages.

The increasing growth of Semantic Web applications also led to the develop-
ment of a new class of external memory-based retrieval systems, so called triple
stores. Originally motivated to store RDF schema information, see [Bec04], a
general architecture to store triples was proposed in [BKvH03]. In the recent
years, the number of these stores substantially increased, see for instance Franz
AllegroGraph [Fra11] or OWLIM [Kir06]. Although the creators of triple stores
continuously come up with more impressive performance evaluation results, there
are two basic problems with these statistics. First, in general, it is not clear what
kind of reasoning takes place inside the triple store during retrieval - it can be
anything from pure lookup to complex description logic reasoning. Second, the
hardware test configurations used by triple stores creators seem to be a little
over the line. For instance, if one uses four computers with 48 GB of main mem-
ory each, then it is not a big surprise that the system is able to handle datasets
in the order of several GB. This scenario seems to be at odds with the original
intention of triple stores - managing data in external memory.

Another approach to overcome the problem of reasoning over large ontologies is
to approximate the ontology by a more compact representation or in a weaker
description logic. In [PTZ09], the authors propose to reuse the idea of knowl-
edge compilation to approximate ontologies in a weaker ontology language. For
the ontology language of their choice, i.e. DL-LITE , efficient query answering
algorithms with polynomial data complexity exist. Reasoning on the approxi-
mated ontology allows to include/reject potential answers with respect to the
original ontology. A similar direction was taken in [RPZ10], where the termi-
nology part of an ontology is approximated to the description logic EL++. The
results from the approximated ontology are used for more efficient classification
over the original ontology. The classification results can then be used for more
efficient retrieval as well.

Another approach focusing on reasoning over instances in large ontologies is
presented in [TRKH08]. The algorithms in [TRKH08] are based on KAON2
[Mot08] algorithms, which transform the terminological part of an ontology into
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Datalog [MW88]. Depending on the transformation strategy, the obtained Dat-
alog program can be used for sound or complete reasoning over instances in the
source ontology. The preceding approximation approaches rely on expressivity
reduction of the ontology language.

A different approach is proposed in [DFK+07], based on summarization and re-
finement. First, a summarization of the assertional part is created by aggregating
individuals. This is part of a setup step that can be performed offline, i.e. before
query answering takes place. Queries are then executed over the summarization.
During the summarization process, one has to take care of inconsistencies. If the
summarization leads to inconsistencies, previously merged individuals have to
be broken up again.

In our work, we propose a system which can handle (i.e. perform sound and
complete instance retrieval) more than 1 billion ABox assertions. For the syntax
and semantics of the description logic SHI please refer to [Baa99]

2 Ingredients for Efficient Instance Retrieval

2.1 ABox Modularization

In [WM08], a method is proposed to identify the relevant information (assertions)
to reason about an individual. The main motivation is to enable in-memory
reasoning over large ontologies, i.e. ontologies with a large ABox, for traditional
tableau-based reasoning systems.

Inspired by graph partitioning approaches, we developed techniques to break
down an ABox into smaller chunks (modules), such that decision problems can
be solved by considering these smaller parts only.

Naive modularization techniques (based on connectedness of individuals) are
usually not sufficient for ABox modularizations, since most individuals are some-
how connected to each other. We extend the naive modularization technique by
introducing so-called ABox splits. Informally speaking, an ABox split breaks up
a role assertion in an ABox, while preserving the semantics (this is formalized
below). The idea is depicted in Figure 1. The clouds in Figure 1 indicate a set
of ABox assertions. We split up the role assertion teaches(ann, c1), create two
new individuals (ann∗ and c1∗), and keep the concept assertions for each fresh
individual copy. After applying all possible ABox splits to an ABox of an on-
tology, a graph-based ABox modularization becomes more fine-grained, i.e. one
obtains more (and smaller) modules.
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Fig. 1 Intuition of an ABox split

Definition 1 (SHI-splittability of Role Assertions). Given a SHI-ontology
O = 〈T,R,A〉 and a role assertion R(a1, a2), we say that R(a1, a2) is SHI-
splittable with respect to O if

1. there exists no transitive role R2 with respect to R, such that R � R v R2,
2. for each C that can be propagated over the role description R

– C = ⊥ or

– there exists a concept description C2, such that C2(b) ∈ A and T � C2 v
C or

– there exists a concept description C2, such that C2(b) ∈ A and T �
C u C2 v ⊥

and
3. for each C ∈ extinfo∀T,R(R−)

– C = ⊥ or

– there exists a concept description C2, such that C2(a) ∈ A and T � C2 v
C or

– there exists a concept description C2, such that C2(a) ∈ A and T �
C u C2 v ⊥.

It can be shown that ABox splits are consistency preserving, if the role assertion
is SHI-splittable. The idea is that each tableau proof which makes use of prop-
agated concept descriptions (via a ∀-tableau rule application) can be rewritten
into a tableau proof without using the ∀-tableau rule application.
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An individual island can be computed following the approach in [WM08]: given
a start (root) individual, one can perform a graph search following all SHI-
unsplittable role assertions. This individual island is then sound and complete
for instance checking w.r.t. the root individual.

2.2 One-Step nodes

We introduce a specialization of individual islands next. The basic idea is to
define a notion of so-called pseudo node neighbors, which represent the directly
asserted successors of a named individual in an ABox. Then, for each individual
in the ABox, the information about all pseudo node successors plus the infor-
mation about the original individual is combined, to obtain so-called one-step
nodes. In addition to similarity detection, these one-step nodes can be used to
answer instance checking and instance retrieval queries directly (always sound,
and possible in a complete manner).

First, in Definition 2, we formally define a pseudo node successor for an individual
with respect to an ABox.

Definition 2 (Pseudo Node Successor). Given an ABox A, a pseudo node
successor of a named individual a is a pair pnsa,A = 〈rs, cs〉, such that ∃a2 ∈
Ind(A) with

1. ∀R ∈ rs.(R(a, a2) ∈ A ∨R−(a2, a) ∈ A),
2. ∀C ∈ cs.C(a2) ∈ A, and
3. rs and cs are maximal.

Next, we combine all pseudo node successors of a named individual a in an ABox
A, the reflexive role assertions for a, and the directly asserted concepts of a, in
order to create a summarization representative, called one-step node.

Definition 3 (One-Step Node). Given an ontology O = 〈T,R,A〉 and an
individual a ∈ NInd(A), the one-step node of a for A, denoted osna,A , is a
tuple 〈rootconset, reflset,pnsset〉, such that rootconset = {C|C(a) ∈ A},
reflset = {R|R(a, a) ∈ A ∨R−(a, a) ∈ A}, and pnsset is the set of all pseudo
node successors of individual a. The set of all possible one-step nodes is denoted
OSN.

Definition 4 (One-Step Node Similarity). Two individuals a1 and a2 are
called one-step node similar for an ABox A if osna1,A = osna2,A .

Every one-step node can be used for sound instance checking, since it repre-
sents a subset of the ABox assertions from the input ABox. It is clear that not
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every one-step node is complete for instance checking. However, in case the one-
step node coincides with the individual island, then we can show that instance
checking over the one-step node is even complete. For this, we define so-called
splittable one-step nodes, for which each role assertion to a direct neighbor is
SHI-splittable.

Definition 5 (Splittable One-Step Node). Given an ontology O = 〈T,R,A〉,
an named individual a, and a one-step node osna,A =〈rootconset, reflset,pnsset〉,
we say that osna,A is splittable if for each 〈rs, cs〉 ∈ pnsset, a fresh individ-
ual a2 /∈ Ind(A), and for each R ∈ rs, the role assertion axiom R(a, a2) is
SHI-splittable with respect to ontology O2 =〈T,R,A2〉 with

A2 ={C(a) | C ∈ rootconset} ∪ {C(a2) | C ∈ cs} ∪ {R(a, a2)}.

It is easy to see, that splittable one-step nodes can be directly used for sound and
complete instance checking. Furthermore, two similar one-step nodes only need
to be checked one time during instance retrieval. An example is shown below.

3 Example

In the following, we look at an example to discuss the optimization of instance
checking and instance retrieval by the techniques introduced above.

Example 1 (Example Ontology for Island Reasoning). The example ontology
OEx1 = 〈TEx1,REx1,AEx1〉 is defined as follows

TEx1 = {
Chair ≡ ∃headOf.Department, Student ≡ ∃takes.Course,

GraduateStudent v ∀takes.GraduateCourse,

UndergraduateCourse u Chair v ⊥, GraduateCourse u Chair v ⊥,
UndergraduateCourse v Course,GraduateCourse v Course,

Student u Chair v ⊥,> v ∀takes.Course

}
REx1 = {headOf v memberOf, teaches ≡ isTaughtBy−}
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Fig. 2 Individual relationships and splittability for Example 1

AEx1 = {
Department(cs), Department(ee),

P rofessor(ann), P rofessor(eve), P rofessor(mae),

UndergraduateCourse(c1), UndergraduateCourse(c4),

UndergraduateCourse(c5),

GraduateCourse(c2), GraduateCourse(c3),

Student(ani), Student(ean), Student(eva), Student(noa),

Student(sam), Student(sue), Student(zoe),

headOf(ann, cs),memberOf(eve, cs), headOf(mae, ee),

teaches(ann, c1), teaches(eve, c2), teaches(eve, c3),

teaches(mae, c4), teaches(mae, c5),

takes(ani, c1), takes(ean, c1), takes(ean, c2), takes(eva, c3),

takes(noa, c3), takes(sam, c4), takes(sue, c5), takes(zoe, c5)

}.

The relationships among individuals of AEx1 are depicted in Figure 2. Please
note that only role assertions are used to build the graph, since we only want
to emphasize the relationship between the ABox individuals. SHI-splittable
role assertions are indicated with a dashed line. For instance, the role assertion
takes(ani, c1) is not SHI-splittable because the concept description GraduateCourse
can be propagated via role description takes. Please note that all these role asser-
tions would be SHI-splittable if we had a disjointness axiom for GraduateCourse
and UndergraduateCourse. However, to show the behavior of reasoning in case
of SHI-unsplittability, we omitted the disjointness axiom here.
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3.1 Instance Checking

For instance checking, we are given an ontology O = 〈T,R,A〉, an atomic
concept description C, and an individual a ∈ NInd(A), and we would like
to find out, whether O � C(a). The process of instance checking is done in
two steps. First, we take the one-step node osna,A of individual a and check,
whether osna,A � C(a). If yes, then we are done, since we know that one-step
nodes are sound for instance checking with respect to the input ontology O. If
osna,A 2 C(a), then we distinguish two cases. First, if osna,A is splittable, then
we know that we have O 2 C(a). Otherwise, if osna,A is not splittable, then we
load the individual island ISLa for individual a and perform instance checking
over ISLa .

As an example for instance checking, we would like to check, whether the in-
dividual ann is an instance of concept description Chair with respect to the
ontology OEx1. The one-step node osnann,AEx1 is defined as follows:

osnann,AEx1 =〈{Professor}, ∅, {〈{headOf}, {Department}〉,
〈{teaches}, {UndergraduateCourse}〉}〉.

One possible one-step node realization of osnann,AEx1 is

ABox(osnann,AEx1) = {Professor(ann), headOf(ann, a1), teaches(ann, a2)}.

It is easy to see that we have 〈T,R, ABox(osnann,AEx1)〉 � Chair(ann), and
thus we have ABox(osnann,AEx1) �TEx1,REx1

Chair(ann) and by soundness of
one-step node reasoning OEx1 � Chair(ann).

As a second example for instance checking, we would like to check, whether the
individual c1 is an instance of concept description Chair with respect to the
ontology OEx1. The one-step node osnc1,AEx1 is as follows:

osnc1,AEx1 =〈{UndergraduateCourse}, ∅, {〈{teaches−}, {Professor}〉,
〈{takes−}, {Student}〉}〉.

One possible one-step node realization of osnc1,AEx1 is

ABox(osnc1,AEx1) = {UndergraduateCourse(c1), teaches(a1, c1, ), takes(a2, c1)}.

It is easy to see that we have 〈T,R, ABox(osnc1,AEx1)〉 2 Chair(c1). In this
case, the one-step node does not indicate entailment, and since osnc1,AEx1 is not
a splittable one-step node, we should refer to the individual island of individual
c1. However, another simple instance check can help us to avoid using the indi-
vidual island here. It is easy to see that we have 〈T,R, ABox(osnc1,AEx1)〉 �
¬Chair(c1), by disjointness of UndergraduateCourse and Chair. And this
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means that we have OEx1 � ¬Chair(c1). Thus, in some cases, the ”‘negated
instance check”’ for one-step nodes can also help us to avoid performing reason-
ing on (more complex) individual islands. However, if the negated instance check
fails, and the one-step node is unsplittable, then we really have to use sound and
complete individual islands.

3.2 Instance Retrieval

In the following, we discuss instance retrieval optimization over ontologies. This
is a direct extension of instance checking, by using one-step node similarity in
addition. The first naive approach would be to apply instance checking tech-
niques to each named individual in the ABox. For ontology OEx1, we would
have to perform 17 instance checks in that case. However, we have introduced
the notion of one-step node similarity. The idea is that similar one-step nodes
entail the same set of concept descriptions for the named root individual. Given
the set of all one-step nodes for an input ontology, we can reduce the number of
instance checks.

For example, assume that we would like to perform instance retrieval for the
concept description Chair with respect to ontology OEx1. First, we retrieve the
one-step node for each named individual in AEx1. The resulting one-step nodes
are shown below:

osnani,AEx1 = osnsam,AEx1 = osnsue,AEx1 = osnzoe,AEx1 = 〈{Student}, ∅,
{〈{takes}, {UndergraduateCourse}〉}〉

osnean,AEx1 = 〈{Student}, ∅,
{〈{takes}, {UndergraduateCourse}〉, 〈{takes}, {GraduateCourse}〉}〉

osneva,AEx1 = osnnoa,AEx1 = 〈{Student}, ∅,
{〈{takes}, {GraduateCourse}〉}〉

osnc1,AEx1 = osnc4,AEx1 = osnc5,AEx1 = 〈{UndergraduateCourse}, ∅,
{〈{teaches−}, {Professor}〉, 〈{takes−}, {Student}〉}〉

osnc2,AEx1 = osnc3,AEx1 = 〈{GraduateCourse}, ∅,
{〈{teaches−}, {Professor}〉, 〈{takes−}, {Student}〉}〉

osnann,AEx1 = osnmae,AEx1 = 〈{Professor}, ∅,
{〈{headOf}, {Department}〉, 〈{teaches−}, {UndergraduateCourse}〉}〉
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osneve,AEx1 = 〈{Professor}, ∅,
{〈{memberOf}, {Department}〉, 〈{teaches−}, {GraduateCourse}〉}〉

osncs,AEx1 = 〈{Department}, ∅,
{〈{headOf−}, {Professor}〉, 〈{memberOf−}, {Professor}〉}〉

osnee,AEx1 = 〈{Department}, ∅,
{〈{headOf−}, {Professor}〉}〉.

Instead of 17 instance checks for 17 named individuals, we are left with 9 instance
checks over 9 similar one-step nodes. For ontologies with a larger assertional part,
similarity of one-step nodes reduces the number of instance checks usually by
orders of magnitudes.

By performing instance checks for concept description Chair over the 9 one-step
nodes, we can conclude that individual ann and individual mae are instances
of Chair. Additional instance checks for concept description ¬Chair yields that
c1, c2, c3, c4, c5, ani, ean, eva, noa, sam, sue and zoe are instances of concept
description ¬Chair, and therefore are not instances of concept description Chair
if the input ontology is consistent. After one-step node retrieval, we are left to
check three individuals for being an instance of concept description Chair, or
not: cs, ee and eve. Usually, one would have to perform instance checks over
the three individual islands. However, since the corresponding one-step nodes for
these three individuals are splittable, we do not need to do any further checks,
since the one-step nodes are already sound and complete for reasoning in OEx1.

4 Implementation and Evaluation

In the following, we provide a general overview over the prototype. We have
implemented the algorithms for reasoning over SHI-ontologies using the pro-
gramming language Java. We used the description logic reasoner Racer [HMW04]
for our evaluation.

While TBox and RBox are kept in main memory, the ABox is serialized to a
database. In our prototypical implementation, we used the relational database
management system MySQL, see [WA02]. Apart from the assertional data, we
also serialize the identifiers of one-step nodes for each individual and information
about splittability of role assertions. For each serialized data structure, we have
implemented caching algorithms, in order to avoid working on external memory
directly for each update. During our experiments, a segmented least recently
used cache, see for instance [KLW94], turned out to be most efficient.

We have used two benchmark ontologies for evaluation of our modularization
techniques: one synthetic benchmark introduced in [GPH05] and a real world
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Fig. 3 Load time and IR time for LUBM (up to 10000 universities)

multimedia annotation ontology used in the CASAM project and introduced in
[GMN+09]. The results for both ontologies are outlined below.

4.1 LUBM

The Lehigh University Benchmark, short LUBM, is a synthetic ontology de-
veloped to benchmark knowledge base systems with respect to large OWL ap-
plications. The ontology is situated in the university domain. The background
knowledge, i.e. the terminology, is described in a schema called Univ-Bench, see
[GPH05] for an overview over the history, different versions and the predecessor
Univ 1.0.

While the terminological part of LUBM is static, the assertional part is dy-
namic in size and can be generated as big as necessary/desired. The dataset we
have used for our experiments was generated by the Univ-Bench artificial data
generator.

We determined the number of ABox modules for different LUBM datasets. It
turned out that most of the role assertions in LUBM can be broken up and the
average module size (number of root individuals in the module) is 1.01.

Our next evaluation measure is load time, shown in Figure 3 on the left. The
load time covers loading data from external memory (here: OWL files), applying
the update algorithms and serializing the data to a database representation. We
process the terminological part first and afterwards the assertional part is loaded.
Please note that for 10000 universities the system has to deal with 1.380.000.000
ABox assertions.

In Figure 3, on the right-hand side, we show the instance retrieval time for the
concept description Chair and different numbers of universities. It can be seen
that the instance retrieval time is almost linear - even for more than 170 million
individuals in LUBM(10000). Furthermore, we would like to emphasize that

SSWS 2011

85



most of the instance retrieval time is spent by the database system to lookup
the solution names on different pages in the data file. The actual description
logic reasoning in our system is roughly constant for the number of universities.
We conjecture that, if one finds a more sophisticated way to store the mapping
between one-step nodes and individuals, instance retrieval times can be further
reduced.

The space needed to store the data for 10000 universities is around 120 GByte
(including all index structures).

4.2 CASAM Multimedia Content Ontology

We performed additional test with a real world ontology from the CASAM
project. The project is focused on computer-aided semantic annotation of multi-
media content. The novelty is the aggregation of human and machine knowledge.
For a detailed discussion of the research objectives, see [GMN+10], [PTP10],
and [CLHB10]. Within the CASAM project, there is a need to define an ex-
pressive annotation language which allows for typical-case reasoning systems.
The proposed annotation language is defined by the so-called Multimedia Con-
tent Ontology, short MCO, introduced in [GMN+09]. Inspired by the MPEG-7
standard, see [IF02], strictly necessary elements describing the structure of mul-
timedia documents are extracted. The intention is to exploit quantitative and
qualitative time information in order to relate co-occurring observations about
events in videos. Co-occurrences are detected either within the same or between
different modalities, i.e. text, audio and speech, regarding the video shots.

Our tests show that all role assertions in the CASAM test ontology can be split
up and therefore reasoning can be reduced to one-step nodes only. We do not
provide diagrams for this ontology, since it is too small (only few thousand ABox
assertions) and the time for reasoning can hardly be measured correctly.

5 Conclusions

The main goal of our work was to address the problem of instance retrieval
over large ABoxes. We focused on the semi-expressive description logic SHI,
which can be seen as a first step towards more expressive description logics.
We solve the given problem by applying ABox modularization techniques and
using a compact representation of individual islands (modules). These compact
representations can be used to group similar individuals together and handle
them in one step during instance retrieval.

Our evaluation showed that we can handle more than one billion ABox assertions
and perform sound and complete instance retrieval for SHI-ontologies.
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In the following, we would like to discuss interesting directions for future work.

An extension from the semi-expressive description logic SHI to SHIQ should
be possible. We think that a syntactical analysis of the TBox and RBox can be
used to identify a set of SHIQ-unsplittable role assertions. Our homomorphism-
based similarity criteria for individuals cannot be directly applied in the presence
of cardinality restrictions. Further extensions, for instance to SHOIQ, might
be possible, but will surely require a lot of work and sophisticated analysis
techniques.

Another direction for future work is the focus on more expressive query lan-
guages. While we focus on instance checking and instance retrieval, the next
natural step is conjunctive query answering [GHLS07]. We think that query
answering with respect to the class of grounded conjunctive queries, is straight-
forward. One would have to combine the results from sound (and complete rea-
soning) in order to identify possible variable bindings. The extension to standard
conjunctive queries is without doubt much harder.

Since rules over ontologies have become more important recently, it would be
interesting to implement a rule-based query answering engine on top of our
ABox modularizations. We already performed first tests. By syntactical analysis
of rule bodies we decided which individual islands have to be extended/merged.
The first results are quite encouraging.

Finally, more comprehensive experimental studies are required. Recently pub-
lished work [SCH10] on new data generation algorithms for synthetic test on-
tologies might be a good place to start from. In general, we believe that our
results carry over to other ontologies. However there exist scenarios, especially
extensive use of transitive roles, which make it much harder to find fine-grained
ABox modularizations.
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Balcázar, Francesco Bonchi, Aristides Gionis, and Michèle Sebag, editors,
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Abstract. In recent years, there has been an explosion of publicly avail-
able Semantic Web data. In order to effectively integrate millions of
small, distributed data sources and quickly answer queries, we previously
proposed a tree structure query optimization algorithm that uses source
selectivity of each query subgoal as the heuristic to plan the query exe-
cution and uses the most selective subgoals to provide constraints that
make other subgoals selective. However, this constraint propagation is
incomplete when the relevant ontologies contain cyclic axioms. Here, we
propose an improvement to this algorithm that is complete for cyclic
axioms, yet still able to scale to millions of data sources.

Keywords: Information Integration, Cyclic Axioms, Magic Sets, Equal-
ity Reasoning

1 Introduction

In recent years, there has been an explosion of publicly available distributed
Semantic Web data. These data are often small (around 50 RDF triples per
source), which is supported by the fact that many large data sets such as DB-
pedia, GeoNames and DBLP provide dereferenceable URIs for each of their
instances; we treat each such URI as a lightweight source. In order to effectively
integrate these Semantic Web data sources and answer queries, we proposed an
inverted index mechanism and a complete non-structure query answering algo-
rithm using this index [6]. Because this index only indicates whether URIs or
literals are present in a document, the non-structure algorithm can not scale to
the real Semantic Web. Therefore, we subsequently proposed a tree-structure
query optimization algorithm that uses source selectivity of each query subgoal
as the heuristic to plan the query execution by selecting a small subset of rele-
vant sources from millions of possible sources [5]. This algorithm was designed
for OWLII ontologies (the intersection of OWL with GAV and LAV rules) -
a subset of OWL DL (Description Logic) [10]. However, it is incomplete when
cyclic axioms are considered because it does not load all relevant sources that
correspond to a query subgoal, but instead only loads those that contain the
subgoal predicate and its available variable constraints. On the other hand, each
iteration in the cyclic axiom could generate recursive variable constraints that
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can be propagated into the following iterations. Consequently, without the fix
point computation of cyclic axioms, the tree-structure algorithm will miss those
sources collected by applying the recursive variable constraints in each iteration.
Therefore, in order to guarantee completeness, we need special treatment for
cyclic axioms. Furthermore, this process should be dynamic because data on the
web is constantly in flux.

In DL, a cyclic axiom is one that references the same (or equivalent) classes
(or properties) on both sides of the subsumption relation. Such an axiom may
be explicit or inferred. For instance, ∃P.C ⊑ C is a cyclic axiom, where C is a
class and P is a property. P ◦ P ⊑ P is also a cyclic axiom, where P actually
stands for a transitive property. Note, rdfs:subClassOf , rdfs:subPropertyOf ,
owl:equivalentClass and owl:equivalentProperty are not cyclic unless they are
used to define a class/property to be a subclass/subproperty of itself. To the
best of our knowledge, no one has calculated how many cyclic axioms are used
in real world ontologies. However, Wang et al. [13] surveyed 1275 ontologies and
found 39 (3%) that contained a transitive property. Instance coreference is a spe-
cial case of cyclic axiom because owl:sameAs is a ubiquitous transitive property
as defined: owl:sameAs ◦ owl:sameAs ⊑ owl:sameAs. The Billion Triple Chal-
lenge 2010 data set has 6,932,678 URI resources connected by 8,711,398 unique
owl:sameAs statements [2]. The graph made of these owl:sameAs statements
consists of 2,890,027 weakly connected components. Most components are pairs
of nodes joined by owl:sameAs links. This observation implies that the typical
owl:sameAs network is small but not ignorable.

Although handling cyclic axioms is routine for typical inference algorithms,
they present challenges when querying large distributed Knowledge Bases (KBs).
Some related but different work has been proposed. Pan et al. described a fix
point computation algorithm for cyclic axioms in DLDB3 [9]. Mei et al. dis-
cussed the fix point computation of cyclic axioms on ontology query answering
over databases [8]. Urbani et al. proposed a MapReduce reasoner to deal with
the fix point computation of owl:sameAs triples [12]. Qasem et al. presented an
extended GNS algorithm to handle instance coreference [11]. Their main draw-
back is that they all precompute (lacking flexibility) rather than dynamically
compute the fix point of cyclic axioms for centralized KBs as opposed to large
distributed KBs. In addition, Lam et al. [4] proposed an approach to blocking the
expansion of cyclic axioms in order to guarantee termination of the computation
during their cycle handling. However, this process aims to resolve the unsatisfied
ontology but not for query answering over large distributed KBs. Another im-
portant approach of handling cyclic axioms is Magic Sets [1], which is a general
algorithm for rewriting logical rules to compute the fix point of cyclic axioms.
It applies the sideways information passing strategy (SIPS) and improves query
answering efficiency by restricting the computation to facts that are related to
the query. Since SIPS is basically similar to our constant constraint propagation,
we incorporate the Magic Sets theory into our algorithm. More details will be
given in Sections 2 and 3. Therefore, inspired by the traditional Magic Sets the-
ory and based on the tree-structure algorithm [5], we propose a dynamic cyclic
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axiom handling algorithm for query answering over large distributed KBs. Our
main contributions are: 1) we develop a dynamic stack-based cyclic axiom han-
dling algorithm, which dynamically computes the fix point of cyclic axioms and
does instance equality reasoning (owl:sameAs inference) in a separate process,
2) we demonstrate that our algorithm can perform well on both a synthetic data
set with 20 ontologies having significant heterogeneity and a real world data set
with 73,889,151 triples distributed among 21,008,285 documents.

The remainder of the paper is organized as follows: Section 2 describes some
preliminary work. In Section 3, we describe the cyclic axiom handling algorithms
for large distributed KBs. Section 4 presents the experiments that we have con-
ducted to evaluate the proposed algorithms. Finally, in Section 5, we conclude
and discuss future work.

2 Preliminaries

In this section, we first introduce some background and the main drawback of
our tree-structure algorithm [5]. Then, we will describe the traditional Magic
Sets theory [1], especially the part related to our algorithm.

2.1 Tree-structure algorithm

In the Semantic Web, there exist many ontologies, which can contain classes,
properties and individuals. We assume that the assertions about the ontologies
are spread across many data sources, and that mapping ontologies are defined
to align the classes and properties of the domain ontologies. For convenience of
analysis, we separate ontologies (i.e. the class/property definitions and axioms
that relate them) and data sources (assertions of class membership or property
values). Formally, we treat an ontology as a set of axioms and a data source as
a set of RDF triples. A collection of ontologies and data sources constitute a
semantic web space:

Definition 1. (Semantic Web Space) A Semantic Web Space SWS is a tuple
〈D, o, s〉, where D refers to the set of document identifiers, o refers to an ontology
function that maps D to a set of ontologies and s refers to a source function that
maps D to a set of data sources.

We have chosen to focus on conjunctive queries, which provide the logical
foundation of many query languages (SQL, SPARQL, Datalog, etc.). A conjunc-
tive query has the form Q〈X〉 ← B1

(

X1

)

∧ . . . ∧ Bn

(

Xn

)

where each variable

appearing in 〈X〉 is called a distinguished variable and each Bi(Xi) is a query
triple pattern (QTP) 〈si, pi, oi〉, where si is a URI or variable, pi is a predicate
URI, and oi is a literal, URI, or variable.

Our problem is, given a SWS, how do we efficiently answer a conjunctive
query? The key point to this problem is how to prune sources that are clearly
irrelevant and focus on those that might contain useful information for answering
the query. We have shown that a term index could be an efficient mechanism for
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locating the documents relevant to queries over distributed and heterogeneous
semantic web resources [6]. Based on the term index, we proposed an effective
tree-structure algorithm [5]. Given a rule-goal tree that aims to encapsulate all
possible ways the required information could be represented in the sources [3] by
using the axioms in the domain ontologies and the mapping ontologies, our tree-
structure algorithm uses a bottom-up process to select sources and the selectivity
of each goal node as a heuristic to greedily optimize and plan the query execution.
The source selectivity of a selection procedure sproc for a query α is defined to
be the number of sources not selected divided by the total number of sources
available:

Selsproc(α) =
|D| − |sproc(α)|

|D|
(1)

The tree-structure algorithm always starts with the most selective QTP ,
incrementally loads the relevant sources, and uses the data from the sources to
further constrain related QTPs in order to answer queries. It is only complete
for acyclic ontologies expressed in OWLII defined below:

Definition 2. The syntax of OWLII consists of DL axioms of the forms C ⊑ D,
A ≡ B, P ⊑ D, P ≡ Q, P ≡ Q−, where C is an La class, D is an Lc class, A,
B are Lac classes and P , Q are properties. Lac, La and Lc are defined as:
• Lac is a DL language where A is an atomic class and i is an individual.

If C and D are classes and R is a property, then C ⊓D, ∃R.C and ∃R.{i} are
also classes.
• La includes all classes in Lac. Also, if C and D are classes then C ⊔D is

also a class.
• Lc includes all classes in Lac. Also, if C and D are classes then ∀R.C is

also a class.

In the presence of cyclic axioms, the tree-structure algorithm becomes incom-
plete because the cyclic axioms require that the goal node (e.g. the coreferenced
instance for owl:sameAs) be iterated over to collect sources until a fix point is
reached in order to obtain the complete answers. For instance, take the cyclic
Datalog axiom ancestor(?x, ?y) :- ancestor(?x, ?z) ∧ ancestor(?z, ?y) 1 and its
query ancestor(John, ?y). Assuming we have collected sources containing the
substitutions {?z/Bob, ?y/Andy} by using the subgoals ancestor(John, ?z) and
ancestor(?z, ?y) respectively on the term index, the tree-structure algorithm
then finishes processing this axiom because all of its subgoals have been handled
and their corresponding sources have also been collected. However, those sources
containing the recursive descendants of Bob and Andy are still relevant but will
be missed because the given axiom is not recursively applied. Consequently, the
tree-structure algorithm is clearly incomplete.

1 The property composition axiom is actually beyond OWLII’s expressivity and its
use in the paper is for the purpose of giving an example. owl:sameAs is specially
handled in Section 3.2.
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2.2 Magic Sets

The Magic Sets method executes a top-down evaluation of a query by adding
rules which narrow the computation to what is relevant for answering the query.
As mentioned in section 1, it applies the SIPS strategy that describes how bind-
ings passed to a rule’s head by unification are used to evaluate the predicates in
the rule’s body. For instance, let V be an atom that has not yet been processed,
and Q be the set of already considered atoms, then a SIPS specifies a propaga-
tion V →X Q, where X is the set of the variables bound by V , passing their
values to Q.

The method is structured in four steps: rule adornment, rule generation, rule
modification and query processing. They are illustrated as follows by considering
the axiom ancestor(X,Y ) :- ancestor(X,Z), ancestor(Z, Y ) together with a
query ancestor(John, Y ), where X , Y and Z are variables and John is a given
instance. Note, the given axiom is cyclic.

(1) Rule adornment: this phase is to materialize, by suitable adornments,
binding information for predicates. These are strings of the letters b and f , de-
noting bound or free for each argument of a predicate. First, adornments are
created for query predicates. The adorned query is ancestorbf (John, Y ). In the
given rule, ancestorbf (John, Y ) passes its binding information to ancestor(X,Z)
by ancestorbf (X,Y )→X ancestor(X,Z). Then, ancestor(X,Z) is adorned
ancestorbf (X,Z). Now, we consider ancestor(Z, Y ), for which there is no bind-
ing information and we can still use the given axiom to expand it. Finally, we have
two resulting adorned rules: ancestorbf (X,Y ) :- ancestorbf (X,Z), ancestorff (Z, Y )
and ancestorff (Z, Y ) :- ancestorff (Z,W ), ancestorff (W,Y ), where W is a new
introduced variable.

(2) Rule generation: the adorned program is used to generate magic rules.
For each adorned predicate p in the body of an adorned rule ra, a magic rule
rm is generated such that (i) the head of rm consists of magic(p), and (ii)
the body of rm consists of the magic version of the head of ra, followed by
all of the predicates of ra which can propagate the binding on p. In our ex-
ample, two magic rules are magic ancestorff (Z, Y ) :- magic ancestorbf (X,Y ),
magic ancestorff (X,Z) andmagic ancestorff (Z,W ) :-magic ancestorff (Z, Y ),
ancestorff (W,Y ).

(3) Rule modification: the adorned rules are modified by including magic
atoms generated in Step (2) in the rule bodies. The resultant rules are called mod-
ified rules. For each adorned rule whose head is h, we extend the rule body by in-
serting magic(h). In our example, ancestorbf (X,Y ) :- magic ancestorbf (X,Y ),
ancestorbf (X,Z), ancestorff (Z, Y ) and ancestorff (Z, Y ) :- magic ancestorff

(Z, Y ), ancestorff (Z,W ), ancestorff (W,Y ) are generated.
(4) Query processing: for each adorned predicate gα of the query, (i) the magic

seed magic(gα) is asserted, and (ii) a rule g :- gα is produced. In our example, we
generate magic ancestorbf (John, Y ) and ancestor(X,Y ) :- ancestorbf (X,Y ).

The complete rewritten program consists of the magic, modified, and query
rules. Given a non-disjunctive datalog program P , a query Q, and the rewritten
program P

′

, it is well known that P and P
′

are equivalent w.r.t. Q [1]. In
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Magic Sets, the adornments of Step (1) aim to cover all possible bound/free
information based on the given query and rules. Then, the generated magic
rules in the following steps can easily avoid irrelevant facts while guaranteeing
completeness during the fix point computation of the cyclic axioms. For our tree-
algorithm, as shown by [5], the constant propagation mechanism is basically the
same as the SIPS strategy, using the available binding of the rule’s head to
constrain the rule’s body. In addition, because our purpose is to collect relevant
sources by constructing boolean queries using the available constant constraint
(bound value) and the predicate instead of the real computation of the fix point,
which is actually accomplished by the Reasoner, it is sufficient for us to only
incorporate the rule adornment step into our algorithm. Then, we can easily
detect if two terms have the same predicate and adornment. If so, a cycle is
formed and we can collect only those sources that are necessary for this cycle’s
fix point computation.

3 Cyclic Axiom Handling Algorithms

In this section, we first introduce the Magic Sets-inspired dynamic cyclic axiom
handling algorithm without instance coreference. Then, we discuss the equality
reasoning (instance coreference).

3.1 Cyclic Axiom Handling

To handle cyclic axioms, there are four key points we particularly need to take
care of:

– How to represent and annotate cyclic axioms in the original rule-goal tree of
the query reformulation?

– Within each iteration of one cyclic axiom, how to compute the new gen-
erated substitutions of the given cyclic axiom that will be passed into the
next iteration? In this process, we call the set of new substitutions Relevant
Substitutions (RS).

– How to apply the RS into the selection of relevant sources by using the term
index?

– In case of multiple cyclic axioms mutually nested in one query, how to iden-
tify their correct computation order?

For the first point, as the traditional Magic Sets theory does, we adorn the
cyclic axioms by using their binding information. Then, we mark them in the
rule-goal tree. In theory, if one goal node G is detected to be one that can be
unified with its one ancestor goal node A on condition that G and A are the
same predicate and have the same adornments, then we detect a cycle C starting
with A and ending with G. However, in practice, we apply the heuristic that is
if A and G also have the same bound value, then they are not a cycle because A
and G collect the same sources by using the term index and there is no recursive
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source collection. For instance, in Fig. 1, even though G1 and G2 compose a
cycle, we can skip it because both of them only collect sources containing John
and ancestor. Formally, a cycle C is denoted as C(A,G), where A is C’s starting
node and G is C’s ending node. After the cycle is marked, the rule-goal tree is
transformed into a rule-goal graph and each cyclic axiom will be converted into
one or more rule-goal graph cycles correspondingly. Essentially, a rule-goal graph
cycle means its corresponding axiom will be iteratively executed until a fix point
is reached. For the second point, in the rule-goal graph, the RS of each iteration
for one cyclic axiom essentially consists of the new generated substitutions of
the cycle distinguished variables (CDV s) of this cyclic axiom’s rule-goal graph
cycles. We define each graph cycle’s CDV s to be a set of the distinguished
variables of the starting node of this cycle. In the previous example, C’s CDV s
contains all A’s distinguished variables. At the end of each cycle iteration, we
will compute the RS by asking the reasoner and apply it into the next iteration
if the new RS is not empty. Otherwise, it means we have reached the fix point
of the current cycle. Furthermore, if the RSs of all cycles in the rule-goal graph
for one given cyclic axiom are empty, it means the fix point of this cyclic axiom
has been reached. For the third point, we use the conjunction of each value
in the RS and the goal predicate to query the term index. This helps us to
significantly reduce the number of potentially relevant sources because of the
constant constraints. For the fourth point, we will employ a cycle stack to plan
the cyclic axiom handling sequence. Each cycle can be pushed onto the stack
only if it is not already in the stack. Otherwise, we will postpone its processing.

We begin with the cyclic axiom ancestor(?x, ?y) :- ancestor(?x, ?z)∧ancestor
(?z, ?y) and its query ancestor(John, ?y) to introduce our algorithm. Fig. 1
shows its rule-goal graph. The back arrow means a cycle is marked. Each goal
node has associated adornments (bf or ff) and selectivity (the number of rele-
vant sources).

 

r1 

ancestor
bf

(John,?y):10 G1 

r2 

ancestor
bf

(John,?z):10 G2 ancestor
ff
(?z,?y):100 G3 

ancestor
ff
(?z,?u):100 G4 ancestor

ff
(?u,?y):100 G5 

Cycle:C1 

Cycle:C2 

Fig. 1. An example cyclic axiom

At the beginning, using the term index, each goal node of the rule-goal graph
is initialized with their respective selectivities and bindings. In this example, we
have two cycles: C1(G3, G4) and C2(G3, G5). In our cycle detection, if a goal
node is an ending node of some cycle, we will say a cycle is detected. We use
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S to stand for our cycle stack. Initially, we start with the most selective node
G2 and use its substitutions to constrain its sibling G3. In this process, we start
with G3’s most selective node G4 (Here, G4 and G5 have the same selectivity
and we randomly select G4), where C1 is detected and pushed onto S. Then, we
still start with G4 in processing C1. Now, C1 is detected again and postponed
because it is also already in S. We evaluate G4 and apply its available constant
substitutions into its sibling G5, where C2 is detected and pushed onto S. Now,
S contains C1 and C2. We then start to process C2 still beginning with G4,
where C1 is detected and postponed again. Then, we evaluate G4 and apply its
substitutions to G5, where C2 is detected again and postponed. Now, we are
at the end of one iteration of C2, compute C2’s RS and apply it into the next
iteration to select relevant sources. If the new RS is empty, it means C2’s fix
point has been reached and C2 is popped. Now, S only contains C1. Then, we
go back to the context of C1. Obviously, in processing the next iteration of C1,
C2 will be met again. The previous process of C2 is repeated. Meanwhile, at the
end of each C1’s iteration, we also compute C1’s RS and apply it into the next
iteration to collect sources until the new RS is empty meaning C1’s fix point
has been reached. Finally, we finish processing C1 and C2 and correspondingly
collect all relevant sources of the given cyclic axiom.

Note, in the above process, C1(G3, G4) and C2(G3, G5) are actually redun-
dant cycles because they collect the same data sources. Therefore, we need to
avoid such repeated source collections. In our algorithm, we detect if two cycles
are redundant, which means that each node in one cycle exactly has the same
predicate and same adornments as a node in the other one and vice versa. These
redundant cycles are categorized into different redundant cycle classes and stored
into a structure called the Redundant Cycle Base (RCB). Each redundant cycle
class is a set of cycles that are redundant to each other. Redundant cycles cause
redundant source collection because they could generate the same recursive con-
stants and then collect the same sources multiple times. Therefore, during the
process of each redundant cycle, we need to check if the new recursive constant
has been used by other cycles that are redundant with the current cycle. If not,
we go ahead and start the next generation. Otherwise, we will skip this constant.
Here, we cannot handle only one cycle instead of the whole set of redundant cy-
cles because redundant cycles could appear in different positions of the rule-goal
graph and they thus could have different recursive constants generated to collect
different data sources. Then, even though C1(G3, G4) and C2(G3, G5) are both
pushed onto our cycle stack in the given example, we can avoid the repeated
source collection. In addition, for those instances that match query constants or
that are used as join conditions, we will compute their equivalence (owl:sameAs)
closure on the fly by calling our equality reasoning algorithm (Fig. 3). More de-
tails can be found in section 4.2.

The pseudo code for our cyclic axiom handling algorithms is shown in Fig.
2. The bold lines in Alg. 1 and Alg. 2 and the whole Alg. 3 are new results from
this paper. In Alg. 1, RCB stands for Redundant Cycle Base defined in the
previous paragraph. EKB is a structure that collects and organizes equivalence
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Algorithm 1 Source selection  

function getSourceList(rgraph, ��, q)returns a list of sources  

      inputs: rgraph, a given rule-goal graph (cyclic or non-cyclic) 

     ��, a list of substitutions 

     q, a list of query triple patterns 

1:  Let frontier = leaf nodes or cycle ending nodes, static EKB = φ, static RCB = φ 

           srcs[] = array of sets of sources, indexed by goal nodes 

2:  for each goal node n in rgraph do 

3:        if n has constant C and �. ����	
������
�� � ��� then 

4:        computeSameAs({C}, EKB) 

5:        for each � � �� do 

6:        srcs[n] = qsources(��, EKB) 

7:  do 

8:        Let n = ��� ���� � ���� !�� "|��$�%�&'()|*, p = n.parent 

9:        if n is a cycle ending node AND �. +�� � �+��,-
. then 

10:          update(n.cycle, RCB) 

11:          push(CycleStack, n.cycle) 

12:         �/�%�) 0 �/�%�) 1 234567897:;<=73>9?4"�. +��, /�, � * 

13:          pop(CycleStack) 

14:      if n is a child of an AND rule node r then 

15:                  ��$�%A) 0 ��$�%A) 1 OptimizeANDNode"�N�OAP,  

   �, ��QR��N� &S �, ��$�, T, UVW, XYW*  

16:      else    

17:          ��$�%A) 0 ��$�%A) 1 ��$�%�) 

18:                  if n is a child of rgraph.root and rgraph is a cycle then 

19:   load(srcs[n], KB) 

20:    Let /� = askReasoner (KB, rgraph) 

21:    Let insts = extractJoinInsts(rsc) 

22:    computeSameAs(insts, EKB) 

23:    rgraph.RS = computeRS(rgraph.CDVs, RCB) 

24:       remove n and its siblings from frontier 

25:       if p has no descendants on frontier then 

26:                   add p to frontier 

27: while (S�&�Z�(� [ \�N�OAP. �&&Z]) 

28: return srcs[rgraph.root]  

 

 

 

Algorithm 2 Node optimization 

function OptimizeANDNode(rgraph,on,sibs,srcs,q,EKB,RCB)return a list of sources 

       inputs: rgraph, a rule-goal graph; on, a goal node  

       sibs, on’s sibling nodes;  srcs, an array of sets of sources 

       q, a list of query triple patterns; EKB, the EquivalenceKB; 

       RCB, the redundant cycle base 

1:   Let ORR��$� 0 ��$�%&�), load(srcs[on], KB) 

2:   do  

3: q = T ^  &�, �� = askReasoner (KB, q) 

4: Let insts = extractJoinInsts(rs) 

5: computeSameAs(insts, EKB) 

6:       for each TZA � ��Q� do   

7:         srcs[qtp] = getSourceList(subgraph rooted at qtp, rs, q) 

8: Let on = ���  � _!`_  ab  c�!� d! a ef��g "��$�%Z)* 

9: Remove on from sibs 

10:   ORR��$� 0 ORR��$�1��$�%&�), load"��$�%&�), VW* 

11:    if on is a child of rgraph.root AND rgraph is a cycle AND  

 ��j� 0 k then 

12:         load(srcs[on], KB) 

13:        Let /� = askReasoner (KB, /l/
mn) 

14:         Let insts = extractJoinInsts(rsc) 

15:         computeSameAs(insts, EKB) 

16:         rgraph.RS = computeRS(rgraph.CDVs, RCB) 

17: while (��Q� [ k)  

18: return allsrcs 

Algorithm 3 Source selection for cyclic axioms  

function getCyclicSourceList(rgraph, ��, q) returns a list of sources  

      inputs: rgraph, a given rule-goal graph;  ��, a list of substitutions 

      q, a list of query triple patterns 

1: Let ��o�$ 0  ��, firstIt = true, allsrcs = k 

2: while (��o�$ [ k OR firstIt)  

3: ORR��$� 0 ORR��$�  1 getSourceList"�N�OAP, ��o�$, T* 

4: ��o�$ = rgraph.RS 

5: clear(rgraph.RS), firstIt = false 

6: return allsrcs  

Fig. 2. Pseudo code of handling cyclic axioms

information about instances, which will be elaborated in section 4.2. In the given
rule-goal graph rgraph, each goal node has been adorned with its own binding
information. In line 6 of Alg. 1, qsources is a source evaluation function. Given a
QTP q and a term index I, qsources(q, EKB) =

⋂

c∈terms(q,EKB) I(c), which is

essentially a set of data sources that are relevant to q [5]. The EKB is used here
to collect q’s relevant sources by using both q’s constants and their equivalent
constants in EKB. In line 9, when the current most selective QTP (on) is
a cycle ending node, it means that a cycle is detected and we need to use it
to update our RCB and then push it into the cycle stack (lines 10 and 11).
Note, each goal node in the rule-goal graph can only be involved in one cycle
as an ending node because two cycles sharing one ending node is equivalent
to one cycle starting and ending at these two cycle’s root nodes that has been
annotated before. Then, we enter Alg. 3 to compute the cycle’s fix point (line
12). In Alg. 3, we repeatedly collect sources by executing Alg. 1 if the current
cycle’s RS is not empty (lines 2-5). Here, the RS are computed at the end of
each cycle iteration in lines 18-23 of Alg. 1 and lines 11-16 of Alg. 2 by extracting
the new substitutions of the current cycle’s CDV s and then passed to Alg. 3 for
the recursion use. In this process, the function extractJoinInsts(rsc) extracts
join instances from the given subsitution list rsc (line 21 in Alg. 1, and lines
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4 and 14 in Alg. 2). Its results are passed to our instance coreference handling
algorithm (Alg. 4) to compute the owl:sameAs closure (lines 4 and 22 in Alg. 1,
and lines 5 and 15 in Alg. 2). The function computeRS(rgraph.CDV s,RCB)
is to compute the RS of the given rule-goal graph rgraph (line 23 in Alg. 1 and
line 16 in Alg. 2). Here, for each recursive constant, we check if its redundant
cycles has used it before by using the RCB and rule out it from RS if it’s been
used. When the fix point is reached, we will return all collected sources (line 6)
and go back to Alg. 1. Then, we continue to execute line 13 in Alg. 1 to pop the
processed cyclic axiom.

3.2 Equality Reasoning

Our equality reasoning is based on the heuristic that within the term index, the
QTPs with constant constraints are often highly selective. For instance, given
two QTPs: owl:sameAs(rpi:james, ?y) and owl:sameAs(?x, ?y), the first is
much more selective than the second because of the specific constant rpi:james.
Therefore, compared to the way of loading all sources containing the owl:sameAs
predicate to compute the instance coreference closure, this way helps us signif-
icantly reduce the number of sources that are involved in the closure compu-
tation. Given a query, we call the set of all instances that are used for the
instance coreference closure computation as Relevant Instances (RI). Since we
only compute the equivalence closure of the query constant instances and the
join instances during the query solving, the cardinality of RI is often small.
In our algorithm, we design an EquivalenceKB structure (EKB) that collects
and organizes equivalence information about instances in RI. EKB essentially
supports the disjoint set data structure operations on sets of equivalence classes
of all known instances. An equivalence class in EKB is a set of instances that
are equivalent to each other (explicitly or implicitly connected by owl:sameAs).
Given an instance Ins in RI, we dynamically issue a boolean query “Ins” AND
“owl:sameAs” to our index to find all relevant sources that contain Ins and its
equivalent instances. Then, for each new discovered instance newIns, we further
find newIns’s equivalent instances and merge the equivalence classes containing
Ins and newIns. This process is repeated until no new instances are discovered.
Since the cardinality of RI is often small as stated before, the computation will
quickly and eventually terminate. Note, the equivalence class of each instance in
RI is only computed once. The algorithm pseudo code is shown in Fig. 3.

First, we start with a set of seed instance URIs (Line 2), and use the term
index to find all sources that contain each of these URIs concatenated with
the “owl:sameAs” predicate (Lines 4 and 5). Note, the seed instances are not
all coreferenced instances, but the instances in the RI of the given query and
determined by Alg. 1. Then, we extract the new equivalent URIs (Line 7), merge
the equivalence classes of the seed URIs and the new extracted URIs (Line 8),
and collect the new URIs (Line 9). This process is iteratively repeated by using
any new URIs discovered as seeds (Lines 10-11). Since there are a finite small
number of seed instances as input, and the process will only continue as long as
new URIs are discovered, the algorithm can quickly and eventually terminate.
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Algorithm 4 Fix point computation for instance coreference  

function computeSameAs(insts, EKB) returns a list of instances 

1:     inputs: insts, a list of seed URIs 

2:     Let ������� �  �����, oldinsts = insts 

3:     for each uri � insts do 

4: Let bquery = uri + “AND” + “owl:sameAs”  

5: Let srcslist = askIndexer(bquery) 

6: for each � � �������� do  

7:           Let sameAsPairs = �t | t � � �, ���: ������, � � � �, � � ���  y � uri" 

8:           updateEquivalenceKB(uri, sameAsPairs, EKB) 

9:           ������� �  ������� # all instances URIs from sameAsPairs 

10:   Let newinsts = inslist – oldinsts 

11:   ������� �  ������� # ComputeSameAs3��������, 4567 

12:   return inslist  

 

Fig. 3. Pseudo code of handling instance coreference

4 Evaluation

To evaluate our algorithms, we have conducted two groups of experiments based
on a synthetic data set and a real world data set respectively. The first group
measures the cycle handling performance of our algorithm. The second group
tests the scalability and practicality of our algorithm using a subset of the real
world Billion Triple Challenge (BTC) data set. For both groups, we use a graph-
based synthetic query generator to produce a set of queries that are guaranteed
to have at least one answer each. These queries range from one to eight triples,
have at most seven variables each, and each QTP of each query satisfies the
join condition with at least one sibling QTP . All of our experiments are done
on a workstation with a Xeon 2.93G CPU and 6 GB memory running UNIX.
Our indexer component uses a term index [5] implemented with Lucene. Our
reasoner is KAON2.

4.1 Cyclic Axiom Evaluation Using a Synthetic Data Set

In this group of experiments, we conducted two separate experiments. The
first aims to compare the tree-structure algorithm with the cycle handling al-
gorithm without equality reasoning (tree-structure(cycle w/o sameAs)) to the
tree-structure algorithm without the cycle handling (tree-structure(non-cycle))
and the non-structure algorithm using a synthetic data generator that is de-
signed to approximate realistic conditions. The second aims to compare the
tree-structure algorithm with the cycle handling including the equality reason-
ing (tree-structure(cycle)) to the tree-structure algorithm without the cycle han-
dling (tree-structure(non-cycle)) and the non-structure algorithm. For both ex-
periments, first, we ensure that each generated file is a connected graph, which is
typical of most real-world RDF files. Based on a random sample of 200 semantic
web documents, we set the average number of triples in a generated document
to be 50. In order to achieve a very heterogeneous environment, we conducted
experiments with 20 ontologies, 8000 data sources, and a diameter of 2, meaning
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that the longest sequence of mapping ontologies between any two domain on-
tologies was 2. In this configuration, the average number of sources committing
to each ontology is 400. This configuration resulted in an index size of 75.3MB,
which was built in 21.6 seconds.

Cyclic Axioms Without Equality Reasoning In this experiment, we issued
120 random queries to our synthetic data set to measure our cycle handling
algorithm with the increasing cycle complexity, which is related to two factors:
the average number of cycles per query and the average length per cycle. In
addition, since the cycle complexity increases with the number of unconstrained
QTPs, where an unconstrained QTP is one with variables for both its subject
and object or with an rdf :type predicate paired with a variable subject, we group
our 120 test queries by the number of unconstrained QTPs (from 0 to 5). The
reason for selecting 5 as our maximum number of unconstrained QTPs is that
the non-structure algorithm can only effectively scale to queries with at most 5
unconstrained QTPs [5]. In the metrics, we computed the average query response
time and the cycle complexity. The experimental results are shown in Fig. 4.
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Fig. 4. Cyclic axiom handling algorithm w/o owl:sameAs experimental results. Aver-
age query response time (a) and cyclic axiom complexity (b) as the number of uncon-
strained QTPs varies.

Fig. 4 (a) shows how each algorithm’s average query response time is affected
by increasing the number of unconstrained QTPs with cycle complexity increas-
ing. From this result, we can see that the tree-structure (cycle w/o sameAs)
algorithm is faster than the non-structure algorithm. The reason is that uncon-
strained QTPs are typically the least selective; thus, the more unconstrained
QTPs there are, the more opportunities there are for the tree-structure(cycle
w/o sameAs) optimization algorithm to use constraints to enhance the selectiv-
ity of goals. Due to the additional cycle handling, the tree-structure (cycle w/o
sameAs) algorithm is slower than the tree-structure algorithm (non-cycle), while
the former can return more answers.

Fig. 4 (b) shows how the cyclic axiom complexity changes with the increasing
number of unconstrained QTPs. As shown in this figure, our most complex test
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queries have 5 unconstrained QTPs, 10 cyclic axioms per query and 35.5 nodes
per cyclic axiom. To the best of our knowledge, this complexity is significantly
greater than most queries issued to the semantic web. Therefore, we can conclude
that our cyclic axiom handling algorithm can effectively scale to the real world.

Full Cyclic Axiom Evaluation In this experiment, we introduce the owl:sameAs
triples in our synthetic data set based on the owl:sameAs statistics of the Billion
Triple Challenge 2010 data set [7]. The ratio of sources containing owl:sameAs
is 27.1%. The number of owl:sameAs triples is 2,765 of 45,673 total triples in
8000 sources. All owl:sameAs triples are categorized into 571 equivalence classes.
The largest equivalence class contains 10 instances and the average equivalence
class is 3.7. Like the last experiment, we still issued 120 random queries to our
synthetic data set and group them by the number of unconstrained QTPs (from
0 to 5). In the metrics, we computed the average query response time and the
query completeness. The experimental results are shown in Fig. 5.

Fig. 5 (a) shows how each algorithm’s average query response time is affected
by increasing the number of unconstrained QTPs with the increasing number of
unconstrained QTPs. From this result, we can see that the tree-structure (cycle)
algorithm is faster than the non-structure algorithm. The reason is that uncon-
strained QTPs are typically the least selective; thus, the more unconstrained
QTPs there are, the more opportunities there are for the tree-structure(cycle)
optimization algorithm to use constraints to enhance the selectivity of goals.
Due to the additional cycle and owl:sameAs handling, the tree-structure (cycle)
algorithm is slower than the tree-structure algorithm (non-cycle).

Fig. 5 (b) shows the comparison of the completeness of the tree-structure (cy-
cle) algorithm, the tree-structure (non-cycle) algorithm and the non-structure
algorithm. Because the non-structure algorithm is complete [6], we take its re-
sults as ground truth. The percentage numbers in the graph are the complete-
ness of the tree-structure (non-cycle) algorithm at each point. From this result,
we can see that our tree-structure (cycle) algorithm is more complete than the
tree-structure (non-cycle) algorithm. Furthermore, it returns the same number
of answers as the non-structure algorithm, but has better query response time
than the non-structure algorithm (as shown in Fig. 5 (a)).

4.2 Scalability Evaluation Using the BTC Data Set

In this section, we evaluate our algorithm’s scalability by using a subset of the
BTC 2009 data set (much of which comes from the Linking Open Data Project
Cloud). We have chosen four collections, as summarized in Table 1, with a total
of 73,889,151 triples including owl:sameAs. Using the provenance information
in the BTC, we re-created local N3 versions of the original files from the BTC
resulting in 21,008,285 documents. The size of documents varies from roughly
5 to 50 triples each. In order to integrate these heterogeneous documents, we
manually created some mapping ontologies, primarily using rdfs:subClassOf and
rdfs:subPropertyOf axioms (these schemas do not have any meaningful align-
ments that are more complex). In this experiment, our cyclic axioms are mainly
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Fig. 5. Full cyclic axiom handling algorithm experimental results. Average query re-
sponse time (a) and query completeness (b) as the number of unconstrained QTPs
varies.

from mapping ontologies and owl:sameAs statements. The latter creates the
most cycles. Our index construction time is around 58 hours and its size is
around 18GB. Each document takes around 10ms on average to be indexed. The
Lucene configurations are 1500MB for RAMBufferSize and 1000 for MergeFac-
tor, which are the best tradeoff between index building and searching for our
experiment.

Data Source Namespace # of Sources # of Triples

http://data.semanticweb.org/ swrc 41,974 174,816

http://sws.geonames.org/ geonames 2,324,253 14,866,924

http://dbpedia.org/ dbpedia 10,615,260 48,694,372

http://dblp.rkb-explorer.com/ akt 8,026,878 10,153,039

Total 21,008,285 73,889,151

Table 1. Data sources selected from the BTC 2009 dataset.

Because the non-structure algorithm does not refine goals with constraint
information from related goals, it cannot scale to the BTC data set. In fact,
most of our synthetic queries cannot be solved by this algorithm. For example,
consider the query Q:{〈?x0, swrc:affiliation, “lehigh− univ”〉.〈?x2, akt:has−
title, “Hawkeye”〉.〈?x2, foaf :maker, ?x0〉.〈?x0, akt:full − name, ?x1〉}. For the
non-structure algorithm, the number of sources that can potentially contribute
to solving 〈?x2, foaf :maker, ?x0〉 is 3,485,607, which is far too many to load into
a memory-based reasoner. Even though some reasoners can load this amount of
data as long as the system has 3GB of memory, load times are typically in the 7
hours range, which is clearly unsuitable for real-time queries. However, the tree-
structure algorithms (cycle and non-cycle) can solve this problem because the
number of sources for the same QTP becomes 114 after variable constraints are
applied. For this reason, we only compare the tree-structure family algorithms.

SSWS 2011

103



 

1

10

100

1000

10000

100000

# of 

answers

query 

response 

time

index 

accesses

selected 

sources

L
o

g
a

ri
th

m
ic

 s
ca

le

Tree-structure(cycle,fc)

Tree-structure(cycle, 

non-fc)

Tree-structure(non-

cycle, non-fc)

Fig. 6. BTC data set experimental results.

We executed 150 synthetic queries with at most 10 QTPs. In the metrics,
we computed the average number of answers, average query response time, av-
erage number of selected sources and average index accesses of three algorithms:
the tree-structure (cycle, fc), the tree-structure (cycle, non-fc) and the tree-
structure(non-cycle, non-fc) algorithm. Here, “fc” stands for front-coding, which
is an optimization technique we applied in order to improve the query response
time of our algorithms. This is because of the fact that many URIs in the BTC
data set have the same server name, and within each such set, there are many
with the same namespace. The “fc” technique replaces each common server name
with a number. As a result, our boolean query lengths are greatly compressed.
The results are shown in Fig. 6 using a logarithmic scale. According to the results,
we can see that the tree-structure (cycle, fc) and the tree-structure (cycle, non-
fc) algorithms returned 36.8% more answers than the tree-structure (non-cycle,
non-fc) algorithm even though they have small increases in the other three met-
rics because of the additional cycle processing. However, with the front-coding
optimization, the query response time of the tree-structure (cycle, fc) algorithm
has gained around 20% improvement over the tree-structure (cycle, non-fc) al-
gorithm and is only around 5% more than the tree-structure (non-cycle, non-fc)
algorithm.

5 Conclusions and Future Work

In this paper, we proposed a stack-based fix point computation algorithm to
dynamically handle cyclic axioms including instance coreference for query an-
swering over large distributed KBs. Using this algorithm, our system can deal
with cyclic axioms on the fly and scale to queries with 8 QTPs (5 unconstrained
QTPs), 10 cyclic axioms per query and 35.5 nodes per cyclic axiom on average.
Meanwhile, it can return the same number of answers as the complete non-
structure algorithm. In addition, we have also shown that our algorithm scales
well on a real world data set, allowing randomly generated queries against 20
million heterogeneous data sources to complete in 30 seconds.
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Despite showing initial promise, there is still significant room for improve-
ment. First, the algorithm only focuses on conjunctive queries in SPARQL with-
out FILTER and OPTIONALs. In addition, in order to avoid the computational
challenges of higher-order logics, it does not allow variables in the predicate posi-
tion. Second, the implementation only works with OWLII. In the future, we will
explore how to extend our algorithms to support richer SPARQL queries and
more expressive ontologies such as OWL 2, and also consider how to theoreti-
cally prove the correctness of our approach. We believe that this paper provides
a major step towards a pragmatic solution for dynamic cyclic axiom handling in
querying a large, distributed, and ever changing Semantic Web.
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Abstract. ABox abduction is the process of finding statements that
should be added to an ontology to entail a specific conclusion. In this
paper, we propose an approach for probabilistic abductive reasoning for
SHIQ. Our evaluations show that the proposed approach significantly
extends classical abduction by effectively and correctly estimating prob-
abilities for abductive explanations. Lastly, based on the ideas proposed
for SHIQ, we describe a tractable algorithm for DL-LiteR.

1 Introduction

The prevailing framework for querying and reasoning over data on the semantic
web has been based on logical deduction: the ability to infer and retrieve implied
facts logically entailed from a knowledge base. A number of highly optimized
deductive reasoners (e.g., Pellet [20], KAON2 [8], Hermit [14], TrOWL [22])
have been developed in compliance with the Web Ontology Language standard
(OWL) and successfully used in various applications (e.g., Matching Patients to
Clinical Trials [16]).

However, there is a growing realization in the semantic web community [5]
that deduction is insufficient for new classes of applications that could leverage
the increasing number of formal ontologies available on the semantic web and in
knowledge rich domains such as heathcare and life sciences. Applications that
seek to explain observations (e.g., a patient’s symptoms or errors or failures
in a complex systems) or expectations that are not logically entailed from our
current knowledge would greatly benefit from an abductive reasoning paradigm.
Abductive reasoning is the process of finding the explanations for a set of obser-
vations. In this context, an explanation is a set of axioms S that, if added to a
knowledge base K, will ensure that the combined knowledge base (K ∪ S) now
logically entails the set of observations.

In many situations, the number of abductive explanations for an axiom could
be very high, making it very costly to process all of these explanations. Various
criteria have been considered in the literature to define a preference order on
abductive explanations and to select the best explanations. Preferred explana-
tions are typically the smallest in terms of either their number of axioms or
according to subset inclusion. However, the smallest explanation in terms of size
or set inclusion is not necessarily the most likely. Formal attempts to define the
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best logical abductive solutions in terms of their likelihood have traditionally re-
quired an explicit specification of a probabilistic model as part of the background
knowledge [9, 17].

In this paper, we formalize the notion of likelihood of solutions w.r.t. to a
background knowledge without extending the Description Logic (DL) formal-
ism with a probabilistic model. We propose a novel approach for probabilistic
Abox abduction for SHIQ, one of the most expressive DLs. In this approach,
instead of extending DL formalism with a probabilistic model, we rely on the
ability to discover patterns of explanations in a background knowledge base
and compute simple statistics to find the most prevalent patterns in the knowl-
edge base. Then, we estimate the likelihoods of abductive explanations based on
these statistics. Through empirical studies, we compare the proposed approach
with non-probabilistic abduction where the abductive explanations are assumed
equally likely. We show that the proposed approach can effectively estimate the
likelihoods of the abductive explanations.

Reasoning in SHIQ is known to be intractable [1]. Our empirical studies
also highlight the fact that abductive reasoning in SHIQ is computationally ex-
pensive. Based on the ideas proposed for SHIQ, we have described a tractable
algorithm for probabilistic abduction in DL-LiteR [2], the theoretical underpin-
ning of OWL 2.0 QL profile. In particular, we show that the computational
complexity class of this algorithm is the same as the computational complexity
class of instance checking and conjunctive query answering in DL-LiteR.

The remainder of the paper is organized as follows. Section 2 introduces pre-
liminaries necessary to follow the paper. Section 3 describes a non-probabilistic
abduction approach for SHIQ and Section 4 builds our probabilistic abduction
for SHIQ upon it. Section 5 evaluates the proposed approach through empirical
studies and Section 6 proposes a tractable approach for probabilistic abduction
in DL-LiteR. Lastly, Section 7 discusses the related work and Section 8 concludes
the paper with an overview.

2 Preliminaries

2.1 SHIQ Description Logics

In this paper, unless stated otherwise, we consider ontologies of SHIQ expres-
siveness. In this section, we briefly introduce the semantics of SHIQ, which is
equivalent to OWL-DL 1.0 1 minus nominals and datatype reasoning, as shown
in Table 1 (We assume the reader is familiar with Description Logics [1]). Let
NC be the set of atomic concepts, NR be the set of atomic roles, and NI be the
set of individuals. NC , NR, and NI are mutually disjoint. Complex concepts and
roles are built using constructs presented in Table 1(a).

A SHIQ knowledge base K = (T ,A) consists of a Tbox T and an Abox A.
A Tbox T is a finite set of axioms, including:

– transitivity axioms of the form Trans(R) where R is a role.

1 http://www.w3.org/2001/sw/WebOnt
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Definitions Semantics

C ⊓D CI ∩DI

C ⊔D CI ∪DI

¬C ∆I\CI

∃R.C {x|∃y. < x, y >∈ RI , y ∈ CI}

∀R.C {x|∀y. < x, y >∈ RI ⇒ y ∈ CI}

≤ nR C {x| |{< x, y >∈ RI ∧ y ∈ CI}|
≤ n}

≥ nR C {x| |{< x, y >∈ RI ∧ y ∈ CI}|
≥ n}

R− {< x, y > | < y, x >∈ RI}

Axioms Satisfiability conditions

Trans(R) (RI)+ = RI

R ⊑ P < x, y >∈ RI ⇒< x, y >∈ P I

C ⊑ D CI ⊆ DI

a : C aI ∈ CI

R(a, b) < aI , bI >∈ RI

a ˙6=b aI 6= bI

(a) Constructors (b) Axioms

Table 1. SHIQ Description Logic

– role inclusion axioms of the form R ⊑ P where R and P are roles.⊑∗ denotes
the reflexive transitive closure of the ⊑ relation on roles.

– concept inclusion axioms of the form C ⊑ D where C and D are concept
expressions.

An Abox A is a set of axioms of the form a : C, R(a, b), and a ˙6=b.
As for First Order Logic, a model theoretical semantic is adopted here. In the

definition of the semantics of SHIQ, I= (∆I , .I) refers to an interpretation
where ∆I is a non-empty set (the domain of the interpretation), and .I , the
interpretation function, maps every atomic concept C to a set CI ⊆ ∆I , every
atomic role R to a binary relation RI ⊆ ∆I × ∆I , and every individual a to
aI ∈ ∆I . The interpretation function is extended to complex concepts and roles
as indicated in the second column of Table 1(a).

An interpretation I is a model of a knowledge base K = (T ,A), denoted
I |= K, iff. it satisfies all the axioms in A, and T (see Table 1(b)). A knowledge
base K = (T ,A) is consistent iff. there is a model of K. Let α be an axiom, a
knowledge base K entails α, denoted K |= α, iff. every model of K satisfies α.

2.2 Conjunctive Query

Given a knowledge base K and a set of variables NV disjoint from NI , NR,
and NC , a conjunctive query q is of the form x1, ..., xn ← t1 ∧ ... ∧ tm where,
for 1 ≤ i ≤ n, xi ∈ NV and, for 1 ≤ j ≤ m, tj is a query term. A query
term t is of the form C(x) or R(x, y) where x and y are either variables in NV

or individuals in NI , C is an atomic concept and R is an atomic role. body(q)
denotes the set of query terms of q. V ar(q) refers to the set of variables occurring
in query q, and DV ar(q) = {x1, ..., xn} is the subset of V ar(q) consisting of
distinguished (or answer) variables. Non-distinguished variables (i.e., variables
in V ar(q)−DV ar(q)) are existentially quantified variables.

Let π be a total function from the set DV ar(q) of distinguished variables to
the set NI of individuals. We say that π is an answer to q in the interpretation
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I, denoted I |= q[π], if there exists a total function φ from V ar(q) ∪ NI to ∆I

such that the following hold:

– if x ∈ DV ar(q), φ(x) = π(x)I

– if a ∈ NI , φ(a) = aI

– φ(x) ∈ CI for all query terms C(x) ∈ body(q).
– (φ(x), φ(y)) ∈ RI for all query terms R(x, y) ∈ body(q).

ans(q, I) denotes the set of all answers to q in I . π is said to be a certain answer
to q over a knowledge base K iff. π ∈ ans(q, I) for every model I of K. The set
of all certain answers of q over K is denoted cert(q,K).

2.3 Abductive Reasoning

Abduction is an important reasoning service which provides possible explana-
tions (or hypotheses) for observations that are not entailed by our current knowl-
edge. In this section, we briefly formalize the notion of Abox abduction.

Definition 1 An abox abduction problem is a tuple (K,H, A(a)), where K =
(T ,A) is a knowledge base, called the background knowledge base, H is a set of
atomic concepts or roles, A is an atomic concept and a is an individual appearing
in the Abox A of K such that K does not entail A(a).

In the previous definition,K corresponds to the background knowledge whose
Tbox provides a conceptualization of the domain of discourse. H represents the
concepts and roles that may appear in an explanation for the observation A(a).

Definition 2 A solution to an abox abduction problem P = (K = (T ,A),H,
A(a)) is a set S = {C(u)|C ∈ H, u ∈ NI} ∪ {R(u, v)|R ∈ H, (u, v) ∈ N 2

I } of
abox assertions such that:

1. The knowledge base (T ,A ∪ S) is consistent
2. (T ,A∪ S) |= A(a)

3 Non-Probabilistic Abduction for SHIQ

Given an extensionally reduced SHIQ knowledge base K = (T ,A), the KAON2
transformation computes a disjunctive datalog program with equality, denoted
by DD(K). This datalog program is the union of a set of function-free rules com-
piled from T by exploiting certain resolution operations [8] and a set of ground
rules directly translated from A. Hustadt et al. showed that K is consistent if
and only if DD(K) is satisfiable [8]. The most state-of-the-art abduction sys-
tems [10, 13] are built on Prolog engines that work on plain datalog programs.
Du et al. described a procedure to translate DD(K) into a Prolog program K̄.
That is, using a chain of transformation, we can convert K into a Prolog program
K̄. Then, we can solve the abductive reasoning problem using K̄ and existing
abductive reasoning methods for plain datalog programs [4]. In this section, we
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exploit this approach to find all abductive explanations for A(a), then in Sec-
tion 4 we propose an approach to estimate likelihoods for these explanations.

Figure 1 shows a simplified Prolog program for abductive reasoning over K̄.
This simple program is composed of six rules. Using only six rules, this program
defines the predicate abduce(A,S), where A is an axiom such as
′Alcoholic′(′V ictoria′) and S is a solution to the abduction problem (i.e., abduc-
tive explanation) computed by the program. For this purpose, it simply starts
with an empty set of axioms as shown in the rule 1 and populates it iteratively
based on other rules. The rule 2 guarantees that already entailed Abox axioms do
not appear in S. The rule 4 expands a complex abox axiom into its components
by finding a clause in K̄ so that the head of the clause unifies the axiom. The rule
5 prevents redundancies in the solution. The rule 6 expands an existing partial
solution by adding a new axiom if this axiom is an abducible and this addition
does not create an inconsistency. Abducibles correspond to H, i.e., the concepts
or roles that we desire to appear in the solution. If a concept or role does not
appear in the head of any clause in the prolog knowledge base, then it should also
be an abducible. We may note that concept or role expressions in K may results
in cycles in K̄. For instance, an expression such as ∃hasParent.human ⊑ human
leads to a Prolog clause human(X) : − hasParent(X,Y ), human(Y ). For the
sake of simplicity, we have not shown it in Figure 1, but we implemented rule 4
so that it does not expand an axiom if this expansion results in a loop, instead
this axiom is added directly to the solution. In this way, we prevent infinite loops
during abductive reasoning.

1. abduce(A,S):-
abduce(A,[],S).

2. abduce(A,S,S):-

holds(A),!.
3. abduce((A,B),S0,S):-!,

abduce(A,S0,S1),

abduce(B,S1,S).
4. abduce(A,S0,S):-!,

clause(A,B),
abduce(B,S0,S).

5. abduce(A,S,S) :-
member(A,S),!.

6. abduce(A,S,[A|S]):-

abducible(A),
checkConsistency([A|S]).

Fig. 1. Simplified abductive reasoner for plain datalog programs.

4 Probabilistic Abduction for SHIQ

Various minimality criteria have been considered in the literature to define a
preference order on solutions to an abduction problem. Preferred solutions are
typically the smallest in terms of either their number of axioms or according to
subset inclusion. However, the smallest explanation in terms of size or set inclu-
sion is not necessarily the most likely. Formal attempts to define the best logical
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abductive solutions in terms of their likelihood have traditionally required an
explicit specification of a probabilistic model as part of the background knowl-
edge [9, 17]. In this section, we formalize the notion of likelihood of solutions
w.r.t. to the background knowledge without extending the DL formalism with
a probabilistic model. First, we introduce, as a running example, the following
knowledge base K = (T ,A):

Example 1. T = {∃addictedTo.AlcoholicBeverage ⊑ Alcoholic,

W ine ⊑ AlcoholicBevarage,Whisky ⊑ AlcoholicBevarage,

V odka ⊑ AlcoholicBevarage,RedWine ⊑Wine,WhiteWine ⊑Wine

Man ⊑ Person,Woman ⊑ Person,Man ⊑ ¬Woman}

A = {addictedTo(Mary, red1), addictedTo(Helen, red2), addictedTo(Jane,white1)

addictedTo(Elisabeth, vodka1), addictedTo(Elisabeth,whisky1),

addictedTo(John, vodka2), addictedTo(Paul, vodka1), addictedTo(Henry,vodka2),

addictedTo(Bob, vodka3), addictedTo(James,whisky1),

WhiteWine(white1),Whisky(whisky1),Woman(V ictoria)}
⋃
{RedWine(redn)|1 ≤ n ≤ 2}

⋃
{V odka(vodkan)|1 ≤ n ≤ 3}

The following are valid solutions to the abduction problem P = (K,H =
{addictedTo, V odka,Wine,RedWine,WhiteWine,Whisky}, Alcoholic(V ictoria)):

S1 = {addictedTo(V ictoria, vodka1}
S2 = {addictedTo(V ictoria, newWine),Wine(newWine)}

Which of the two explanations is more likely given the background knowledge
base? In (T ,A∪ S1), the only abox justification2 for Alcoholic(V ictoria), i.e. a
minimum set of Abox assertions J such that (T ,J ) |= Alcoholic(V ictoria), is
J1 = {addictedTo(V ictoria, vodka1), V odka(vodka1)}, whereas
J2 = {addictedTo(V ictoria, newWine),Wine(newWine)} is the only justifica-
tion for Alcoholic(V ictoria) in (T ,A ∪ S2). Now, the justification J1 can be

abstracted into a pattern of justifications ̂J1 = x ← addicted(x, y) ∧ V odka(y)
representing all justifications of Alcoholic(x) involving an addiction to a V odka.
In the background knowledge base K, 5 out of 10 justifications for Alcoholic(x),

with x an individual in A, are instances of the pattern ̂J1. Intuitively, a jus-
tification J for Alcoholic(a), where a is an individual in A, is an instance of

the pattern ̂J1 = x ← addictedTo(x, y) ∧ V odka(y) iff. the conjunctive query
x← addictedTo(x, y)∧V odka(y) issued over (T ,J ) has a as an answer. On the
other hand, only 3 out of 10 justifications for Alcoholic(x) in the background KB

K are instances of the justification pattern ̂J2 = x← addictedTo(x, y)∧Wine(y)
associated with J2. The likelihood of the solution S1 (resp. S2)), denoted Pr(S1)
(resp. Pr(S2)), is 0.5 (resp. 0.3). Thus, S1 appears as the most likely solution.

Next, we formally define the notions of a justification pattern and an instance
of a justification pattern.

Definition 3 Let B be a subset of the Abox A of a knowledge base K and a be an

individual in B. The abox pattern with focus a, denoted ̂B(a), associated with B

2 An abox justification for an axiom is a minimal set of a-box assertions entailing it.
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is the conjunctive query x← t1 ∧ ...∧ tn such that {t1, ..., tn} = {A(π(b))|A(b) ∈
B}∪{R(π(b), π(c))|R(b, c) ∈ B}, where π is an injective mapping from individuals
in B to new variables such that π(a) = x.

Definition 4 Given a knowledge base K = (T ,A), a subset S of A containing
the individual b is an instance with focus b of an abox pattern q = x← t1∧...∧tn,
denoted S |=b q, iff. (x→ b) ∈ cert(q, (T ,S)).

Notation 1 Ω(K,A(a)) denotes the set of all abox justifications for A(a) in
K = (T ,A), where A is an atomic concept and a is an individual in A. Then,
|Ω(K, A|B)| is the number of all justifications in the background knowledge base
K for answers of the conjunctive query x← A(x) that are also instances of the
concept B. Given Ind(A) denotes the set of individuals in A, |Ω(K, A|B)| is
computed as follows.

|Ω(K, A|B)| =
∑

a∈Ind(A) s.t. K|=B(a)

|Ω(K, A(a))|

Let S be a solution to an abduction problem (K = (T ,A),H, A(a)), com-
puted on K̄ as described in Section 3. Assuming that J is the only justification
for A(a) in A ∪ S, the likelihood of the solution S is intuitively the fraction of
justifications for the answers to the query x ← A(x) in the background KB K
that conform to (ie. are instances of) the abox pattern associated with J ∪ S.
Now, in Definition 5, we define how unconditional likelihoods for the solutions
could be computed, where the number of justifications in the background KB,
|Ω(K, A)|⊤|, is a measure of our confidence in the computed likelihood. Here,
the unconditional likelihood of an explanation S is formalised as the likelihood
of the most probable justification of A(a) in K ∪ S. Let J be a justification of
A(a), then the probability of J , denoted as Prjust(J ), is computed as frequency
of the justification pattern derived from J in all abox justifications for the cur-
rent instances of A, i.e., Ω(K, A|⊤). Consider Example 1, the likelihood of S1 is
higher than that of S2, since addiction to vodka is more frequent than addiction
to wine among all known alcoholics.

Definition 5 The unconditional likelihood of a solution S of an abduction prob-
lem (K = (T ,A),H, A(a)), denoted Pr(S), is the real number between 0 and 1
defined as follows:

– if cert(x← A(x),K) = ∅, Pr(S) = 0
– if cert(x← A(x),K) 6= ∅,

Pr(S) = maxJ∈Ω((T ,A∪S),A(a)) Prjust(J )

Prjust(J ) =
∑

b∈ind(A) |{J
′|J ′∈Ω(K,A(b)) and J ′|=b ̂(J∪S)(a)}|

|Ω(K,A|⊤)|

Following Definition 5, let us note that if S has an axiom not entailed by
any justification for A(b), with b an individual in A, Pr(S) = 0. This follows
from the fact that no justification J ′ in K will be an instance of the pattern,
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̂(J ∪ S)(a), associated with J ∪ S, where J is a justification in (T ,A ∪ S) for
A(a). For example, Pr(S1 ∪ {Person(V ictoria)}) = 0, where S1 is the first
solution introduced in the running example.

While computing likelihoods for solutions it is key to compute Ω(K, A(a)).
Now we briefly describe how to compute it. Given an arbitrary primitive concept
C and individual i in K, K |= C(i) iff. K̄ |= C(i), so in order to efficiently
compute abox justifications for C(i), we use a Prolog meta-interpreter [21] that
tracks the steps while proving C(i) in K̄. Hence, using the meta interpreter, we
enumerate all proofs for A(i) in K̄, each of which is one justification. Based on
these justifications, we compute Ω(K, A(i)).

Now, suppose the set of axioms {Woman(Mary),Woman(Helen),Woman(Jane),
Woman(Elisabeth), Man(John) , Man(Paul), Man(Henry), Man(Bob),
Man(James)} were added to the Abox A of Example 1. It could be argued
that the most likely solution for P , is S2 = { addictedTo(V ictoria, newWine),
Wine(newWine)} instead of S1 = {addictedTo(V ictoria, vodka1} because, when
we consider only female alcoholics, 3 out of 4 are addicted to Wine and Victoria
is known to be a woman. Assuming that we have enough instances of the concept
Woman in the background KB, a more appropriate measure is the likelihood
of a solution to P knowing that V ictoria is a Woman. The following definition
formalizes the notion of conditional likelihood.

Definition 6 The conditional likelihood of a solution S of an abduction prob-
lem (K = (T ,A),H, A(a)) knowing a is an instance of a concept C, denoted
Pr(S|C), is the real number between 0 and 1 defined as follows:

– if cert(x← A(x) ∧ C(x),K) = ∅, Pr(S) = 0
– if cert(x← A(x) ∧ C(x),K) 6= ∅,

Pr(S|C) = maxJ∈Ω((T ,A∪S),A(a)) Prjust(J |C)

Prjust(J |C) =
∑

b∈ind(A) and K|=C(b) |{J
′|J ′∈Ω(K,A(b)) and J ′|=b ̂(J∪S)(a)}|

|Ω(K,A|C)|

Definition 6 allows us to estimate the likelihood of abductive explanations
(i.e., solutions for the abduction problem) for A(a) within the context that we
know a is an instance of the concept C. If C is too specific, then it significantly
reduce our confidence on Pr(S|C) by reducing |Ω(K, A|C)|. For instance, if C
is a concept with only three instances {a, b, c} in K, then |Ω(K, A|C)| can be
much smaller than desired. To select the best context, here we propose starting
from the most specific context and iteratively generalize it until our criteria for
an acceptable context holds. This idea is formalized in the algorithm below. The
algorithm accepts a knowledge base K = (T ,A) and the threshold N as input to
find the most specific concept description C acceptable for serving as a context.
Here, N determines the minimum number of individuals C should have to stop
further generalization. In the algorithm, we keep a set S representing the set of
C’s direct super concepts. Initially, C is set to the most specific context C′, which
is the intersection of a’s direct types (line 1), and S contains only C′ (line 2).
While C has a number of individuals less than N and S contains some elements,
we get the most specific element s ∈ S (line 4). The most specific element is
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a concept or a concept description having the longest path to the top concept
⊤ when put into the concept hierarchy derived from K. Then, we update S by
removing s and adding super concepts of s (line 5). Some super concepts of s
may be equivalent to s, so we remove these while updating S. Lastly, at the
end of each iteration, we set C to a DL concept description, the intersection of
elements in S (line 6). If S contains only one element, C is set to this element.
By selecting the most specific element at each iteration during generalization, we
aim fine grained generalization. However, if the total number of individual in the
ontology is less than N , S becomes empty after the removal of the top concept
⊤ and the generalization stops; the algorithm returns ⊤ in this situation.

findContext(K = (T ,A), a,N))
Input: K = (T ,A) a knowledge base, a an individual, N a threshold
Output: C a concept description representing context
(1) C = C′ = intersectionOf(getDirectTypes(a))
(2) S = {C′}
(3) while |getIndividuals(C,K)| < N and |S| > 0
(4) s = getMostSpecific(S,T )
(5) S = S \ {s} ∪ supers(s,T ) \ equivalents(s, T )
(6) C = intersectionOf(S)
(7) return C

The algorithm allows us to generalize context gradually until reaching a con-
cept description C that has desirable number of instances. However, at each
iteration, the distance between the new C and the most specific context C′ may
increase further.This brings the risk of having a context with enough number of
instances, but failing represent a as expected. Once we define a distance metric
between two concept descriptions C′ and C, we can introduce another threshold
δ for distance and avoid over generalization by testing distance(C,C′) < δ dur-
ing iterations, at line 3 of the algorithm. We can use various distance metrics,
two of which can be summarized as: i) the number of iterations done to derive
C from C′ and ii) the distance between the concept descriptions C′ and C in
the concept hierarchy derived from K, after inserting them as new concepts into
K if they do not exist there already.

In Definition 6, the likelihood of a solution is defined in terms of justifications
in the background knowledge base. Unfortunately, computing all justifications
is well known to be intractable [11]. In Section 6, we show that abductive expla-
nations and their likelihoods can be computed efficiently (PTime in the size of
the TBox and LogSpace in the size of the Abox) for DL-LiteR KBs.

5 Evaluation of Abduction in SHIQ

In order to evaluate our approach, we have randomly created five SHIQ ontolo-
gies.Properties of these ontologies are listed in Table 2. Each of these ontologies
contains 10 target concepts. We measure the performance of the proposed ap-
proach through these target concepts. Each target concept C has at least n
possible patterns of justification.
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For each individual I in ontology O, we select a target concept C. Then,
among all justification patterns of C, we randomly select one pattern ̂J . Based
on the selected justification pattern, we add new ABox axioms to O so that I
would be an instance of C. For instance, if ̂J is a pattern of three atoms such as
C(X)← A(X), B(X,Y ), D(Y ), three ABox axioms A(I), B(I, i), and D(i) are
added to O, where i is another individual from O. We also extend the ABox by
randomly adding other axioms about I, as long as these axioms do not lead to a
second justification for C(I). Let us note that justifications for instances of C in
O are not uniformly distributed, because while selecting justification patterns of
C for individuals, we use power low distribution instead of uniform distribution.
This means that most of the justifications for C are instances of small number
of justification patterns of C, while most justification patterns of C have a few
or no instances in O.

We evaluate an abductive reasoning approach based on a target concept C
as follows. First, we pick I, an instance of C. Let J be the justification for C(I).
Second, we randomly select a subset of the axioms in J , denoted as Γ . Third, we
remove the axioms in Γ from O. Hence, C(I) does not hold any more. Fourth,
using the abductive reasoning approach, we compute all abductive explanations
of C(I) for O with their probabilities. Let EΓ be the abductive explanation uni-
fying with Γ . Performance of the abduction approach is Pr(EΓ ), which is the
estimated probability of EΓ by the abduction approach. Here, we compared three
abductive reasoning approaches: non-probabilistic abduction (NPA), uncondi-
tional probabilistic abduction (UPA), and conditional probabilistic abduction
(CPA). In NPA, after computing all abductive explanations, each explanation
is considered equally likely, so if there are n explanations in total, each of them
will have probability 1/n. In CPA, we have used threshold N = 20 while gener-
alizing context during abduction.

Table 2. Synthetic ontologies with different numbers of atomic concepts (#C), roles
(#R), individual (#I), TBox axioms (#TA), and ABox axioms (#AA).〈n〉 denotes
average number of justification patterns for main concepts.

Ontology #C #R #I #TA #AA 〈n〉
O1 187 20 1000 339 4000 18
O2 285 40 3732 602 12000 33
O3 393 50 5199 719 13646 54
O4 381 60 4795 722 17985 63
O5 353 70 5283 691 23418 234

We have conducted experiments for 100 individuals in each ontology. Aver-
age values for our experiments are listed in Table 3, where 〈#E〉 is the average
number of explanations for C(I); 〈PNPA〉, 〈PUPA〉, and 〈PCPA〉 are the aver-
age performances of NPA, UPA, and CPA respectively; 〈TNPA〉, 〈TUPA〉, and
〈TCPA〉 are average time spent in milliseconds by NPA, UPA, and CPA respec-
tively. We can summarize our findings as follows. As the number of explanations
increase, the performance of classical abduction decreases as expected. while the
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performance of UPA always significantly outperform NPA, it could not exceed
0.23 in the experiments. However, the performance of CPA is always around
0.8. These are the results for synthetic ontologies, where we have created abox
axioms around a number of justification patterns. To test our approach using an
ontology which is not created with justification patterns in mind, we have also
conducted experiments using Wine− ontology, which is the W3C’s Wine ontol-
ogy [19] without nominals. Our results for Wine− endorse our findings based on
the synthetic ontologies. That is, UPA and CPA significantly outperform NPA,
i.e. at the magnitudes of 7 and 11 respectively. In general, during the compu-
tation of probabilities, CPA requires significantly more time than UPA does.
Our analysis of time consumption highlights that the probabilistic abduction in
SHIQ is expensive computationally as expected. In the following section, we
propose a tractable algorithm for probabilistic abductive reasoning in DL-LiteR.

Table 3. Results for synthetic ontologies and Wine− ontology (N = 20 for CPA).

Ontology 〈#E〉 〈PNPA〉 〈PUPA〉 〈PCPA〉 〈TNPA〉 〈TUPA〉 〈TCPA〉
O1 15 0.073 0.23 0.84 73 ms. 850 ms. 1293 ms.
O2 31 0.033 0.099 0.82 204 ms. 5612 ms. 7266 ms.
O3 45 0.023 0.177 0.80 449 ms. 9643 ms. 12274 ms.
O4 52 0.020 0.055 0.83 678 ms. 34183 ms. 35264 ms.
O5 135 0.011 0.056 0.82 2658 ms. 70356 ms. 73938 ms.

Wine− 70 0.014 0.099 0.16 37251 ms. 37288 ms. 46916 ms.

6 DL-LiteR Probabilistic Abduction Algorithm

In this section, we present a tractable algorithm to compute solutions to an ab-
duction problem P = (K,H, A(a)) along with their likelihood. The expressivity
of background knowledge base K is restricted to DL-LiteR [2], the theoretical un-
derpinning of OWL 2.0 QL profile. In particular, we show that the computational
complexity class of this algorithm is the same as the computational complexity
class of instance checking and conjunctive query answering in DL-LiteR.

First, we remind the restrictions imposed by DL-LiteR. Concepts and roles
are formed according to the following syntax (A denotes an atomic concept and
P an atomic role):

B → A | ∃R R→ P | P− (1)

C → B | ¬B E → R | ¬R (2)

Furthermore, Tbox axioms are restricted to the following forms: B ⊑ C and
R ⊑ E.

A key property of DL-LiteR is that conjunctive query answering in a KB
K = (T ,A) can be reduced to union of conjunctive query answering against the
KB K′ = (∅,A) with an empty Tbox. In other words, through query rewrite, the
relevant part of T can be compiled into a new query. In [2], for a conjunctive
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query q and a Tbox T , the result of the rewritting, denoted PerfectRef(q, T ),
is a set of conjunctive queries such that, for any Abox A, cert(q, (T ,A)) =
⋃

q′∈PerfectRef(q,T ) cert(q
′, (∅,A)).

For example, after removing the axiom ∃addictedTo.AlcoholicBeverage ⊑
Alcoholic from the Tbox of our running example, it becomes a DL-LiteR KB.
For the query q = x← AlcoholicBeverage(x),

PerfectRef(q, T ) = {x← AlcoholicBeverage(x), x←Wine(x), x← RedWine(x),

x← WhiteWine(x), x← V odka(x), x←Whisky(x)}

Our approach to compute solutions to an abduction problem and their likeli-
hood relies on the observation that an abox justification for A(a) in a DL-LiteR
KB K = (T ,A) must be an instance of the pattern formed by the body of one
query in PerfectRef(x← A(x), T ).

Proposition 1 Let K = (T ,A) be a DL-LiteR knowledge base and A be an
atomic concept such that (T , ∅) does not entail ⊤ ⊑ A. J is an abox justification
for A(a) in K iff. there exist q ∈ PerfectRef(x ← A(x), T ) and a mapping
π from V ar(q) ∪ Ind(J ) to the set Ind(J ) of individuals in J such that (1)
π(x) = a, (2) for b ∈ Ind(J ), π(b) = b, and

(3) J = {C(π(u))|C(u) ∈ body(q)} ∪ {R(π(u), π(v))|R(u, v) ∈ body(q)}

Notation 2 In the remainder of the paper, for a query q and a mapping π from
V ar(q) ∪NI to NI , construct(q, π) is the abox defined as follows:

construct(q, π) = {C(π(u))|C(u) ∈ body(q)}∪{R(π(u), π(v))|R(u, v) ∈ body(q)}

Proof. – Suppose J is a abox justification forA(a) inK. Since a is an answer to
x← A(x), there exist q ∈ PerfectRef(x← A(x), T ) and a mapping π from
variables in q to individuals in J such that π(x) = a and construct(q, π) ⊆
J . π is extended to individuals b in J (π(b) = b). Since construct(q, π) entails
A(a) and J is an abox justification for A(a), it follows that construct(q, π) =
J .

– Let us assume that there exist q ∈ PerfectRef(x ← A(x), T ) and a map-
ping π from V ar(q) ∪ Ind(J ) to the set Ind(J ) of individuals in J sat-
isfying the three conditions of Proposition 1. The rewritting performed by
PerfectRef(p, T ) is such that every generated query p′ ∈ PerfectRef(q, T )
has at most the same number of atoms as p and has at least one atom. There-
fore |construct(q, π)| = 1, which makes construct(q, π) mininal since (T , ∅)
does not entail ⊤ ⊑ A. Thus, construct(q, π) is an abox justification for
A(a).

Algorithm COMPUTESOLUTIONS computes a set of canonical solutions. Those
solutions are canonical in the sense that, as shown in Theorem 1, an expla-
nation for a solution not returned by COMPUTESOLUTIONS is always an instance
of the pattern formed by a solution returned by COMPUTESOLUTIONS. Algorithm
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COMPUTESOLUTIONS invokes Algorithm COMPUTEOMEGA to compute in |Ω(K, A|C)|.
Before formally presenting properties of Algorithm COMPUTESOLUTIONS, we briefly
introduce below an important notation used in COMPUTESOLUTIONS.

Notation 3 For a conjunctive query q, the query q is the conjunctive query
with the same body as q, but whose set of distinguished variables consists of all
variables in q (i.e., DV ar(q) = V ar(q)): q = x1, ..., xk ← t1 ∧ ... ∧ tm where
tj ∈ body(q) for 1 ≤ j ≤ m, and x1, ..., xk are all variables in body(q). Example,
if q = x← A(x) ∧R(x, y) ∧ S(y, z), then q = x, y, z ← A(x) ∧R(x, y) ∧ S(y, z).

computeSolutions(P = (K = (T ,A),H, A(a)), C)
Input: P = (K,H, A(a)) a abduction problem, C is a concept description or ⊤ s.t.
K |= C(a)
Output: set of pairs (S , p), where S is a solution to P with an conditional likelihood
p knowing a is an instance of C
(1) Ω ← computeOmega(K, A,C)
(2) foreach qi in PerfectRef(x← A(x),T )
(3) π a mapping from V ar(qi) ∪ NI to NI s.t. (1) π(x) = a, (2) for b ∈

NI , π(b) = b, and, (3) for y ∈ V ar(qi) such that y 6= x, π(y) is a new
individual not present in K

(4) S ← {C(π(u))|C(u) ∈ qi} ∪ {R(π(u), π(v))|R(u, v) ∈ qi}
(5) if (T ,A ∪ S) is consistent and concepts and roles in S are all in H
(6) ω ← |{π′|π′ ∈ cert(qi, (∅,A))} ∧ K |= C(π′(x))|
(7) emitSolution( (S , ω/Ω) )

computeOmega(K = (T ,A), A,C)
Input: K = (T ,A) a DL-LiteR knowledge base, A is an atomic concept, C is a concept
description or ⊤
Output: |Ω(K, A|C)|
(1) pref ← PerfectRef(x← A(x),T )
(2) r ← 0
(3) foreach qi in pref
(4) foreach π in cert(qi, (∅,A))
(5) new← true
(6) J ← construct(qi, π)
(7) // (8)-(10) ensure that J is not counted if it was previously discovered

by qj for j < i
(8) foreach qj in pref s.t. j < i
(9) if {π′|π′ ∈ cert(qj , (∅,J )) and π′(x) = π(x)} 6= ∅
(10) new← false
(11) if new and K |= C(π(x))
(12) r ← r + 1
(13) return r

Theorem 1 Let P = (K,H, A(a)) be a abductive problem such that K = (T ,A)
a DL-Lite KB. Let C be a concept description or the top concept (⊤). Algorithm
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COMPUTESOLUTIONS(P , C) terminates. Furthermore, if S0 is a solution to P, then,
for each J ∈ Ω((T ,A ∪ S0), A(a)), there is (S, p) ∈ COMPUTESOLUTIONS(P , C)
such that the following hold:

1. Prjust(J |C) ≤ p (i.e. the conditional likelihood of J in K is less than or
equal to p)

2. J |=a ̂S(a) (i.e. J is an instance of the pattern formed by S)

The proof of Theorem 1 is a consequence of the Proposition 1.

Theorem 2 Let P = (K,H, A(a)) be a abductive problem such that K = (T ,A)
a DL-Lite KB. Let C be a concept description or the top concept (⊤). Algorithm
COMPUTESOLUTIONS(P , C) is PTime in the size of the TBox, and LogSpace in the
size of the ABox (data complexity).

Proof. The proof follows from the following properties of DL-LiteR established
in [2]:

– Consistency check and instance checking (i.e., checking K |= C(b) for an
individual b) in DL-LiteR is PTime in the size of the TBox, and LogSpace in
the size of the ABox.

– Conjunctive query answering against a KB with an empty Tbox is LogSpace
in the size of the ABox (i.e., same complexity as conjunctive query answering
against a database)

– For a conjunctive query q and a Tbox T , the maximum size of PerfectRef(q, T )
is (m(n + 1)2)n, where m is the size of the Tbox and n the size of the
query q (i.e., the number of atoms in body(q)). Therefore |PerfectRef(x←
A(x), T )| ≤ 4×m

– For a conjunctive query q and a Tbox T , if q′ ∈ PerfectRef(q, T ) then the
number of atoms in q′ is at most the same as the number of atoms in q.
Therefore, if q′ ∈ PerfectRef(x← A(x), T ) then q′ has at most one atom.

7 Related Work

Abduction in logic programming without probabilities has attracted a lot of at-
tention, and several algorithms, including meta-interpreters written in Prolog,
have been made [10, 13]. However, probabilistic abductive logic programming
has not been studied nearly to the same extent. Poole proposed a probabilistic
abduction approach for horn logic [17]. This approach considers a logic pro-
gramming approach that uses a mix between depth-first and branch and bound
search strategies for abduction where the probabilities are considered and only
the most likely explanations are generated. Henning has proposed an approach
for probabilistic abductive Logic programming with constraint handling rules
[3]. This approach differs from other approaches to probabilistic logic program-
ming by having both interaction with external constraint solvers and integrity
constraints. Henning used probabilities to optimize the search for explanations
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using Dijkstra’s shortest path algorithm. Hence, the approach explores always
the most probable direction, so that investigation of less probable alternatives
is suppressed or postponed. For plan recognition tasks represented in datalog,
Raghavan andMooney proposed to use Bayesian networks while estimating prob-
abilities of abductive explanations [18]. They suggest to learn a Bayesian network
from abductive explanations using structure learning techniques. Once the net-
work structure is determined, the parameters of the network are learned using
an external training set.

There are only a few works in the literature for abductive reasoning in DLs.
However, unlike our approach, none of these works estimates probabilities for the
computed abductive explanations. For TBox abduction, Hubauer et al. proposed
automata-based approach [7] while Noia et al. proposed an approach exploiting
tableaux algorithms for DLs [15]. For ABox abduction, Perald et al. proposed
an approach based on a backward inference method [6]. It restricts axioms in
the DL-based ontology to some special forms and does not use a notion of min-
imality for abductive solutions. Klarman et al. have proposed an approach for
ABox abduction in ALC fragment of OWL DL [12], but this approach cannot
guarantee termination. Du et al. have propose another approach which is based
on translation of SHIQ into Prolog and making abductive reasoning using ex-
isting a approaches for plain datalog programs [4]. They have showed that their
guarantees termination and certain minimality of results. We have followed the
same approach to enumerate all abductive explanations for an ABox axiom.

8 Conclusions

In this paper, first we formalize probabilistic ABox abduction problem in DL.
Then, we have proposed an approach for estimating likelihoods of abductive
explanations. The proposed approach exploits the frequencies of justification
patterns in ABox within the context of specific individuals in a knowledge base.
Our evaluations show that the proposed approach significantly outperform clas-
sical abduction approach where each explanation is assumed equally likely. Our
findings also highlight that the probabilistic abduction in SHIQ is costly, as
expected. That is why, we have presented a tractable algorithm for DL-LiteR at
the end. As a future work, we plan to study the strength and weaknesses of the
proposed approach extensively using various benchmarks.
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Abstract. The World Wide Web infrastructure together with its more
than 2 billion users enables to store information at a rate that has never
been achieved before. This is mainly due to the will of storing almost
all end-user interactions performed on some web applications. In order
to reply to scalability and availability constraints, many web companies
involved in this process recently started to design their own data man-
agement systems. Many of them are referred to as NOSQL databases,
standing for ’Not only SQL’. With their wide adoption emerges new
needs and data integration is one of them. In this paper, we consider
that an ontology-based representation of the information stored in a
set of NOSQL sources is highly needed. The main motivation of this
approach is the ability to reason on elements of the ontology and to
retrieve information in an efficient and distributed manner. Our contri-
butions are the following: (1) we analyze a set of schemaless NOSQL
databases to generate local ontologies, (2) we generate a global ontology
based on the discovery of correspondences between the local ontologies
and finally (3) we propose a query translation solution from SPARQL to
query languages of the sources. We are currently implementing our data
integration solution on two popular NOSQL databases: MongoDB as a
document database and Cassandra as a column family store.

1 Introduction

The distributed architecture of the World Wide Web and its more than 2 billion
users, in 2011, enables to store vast amount of information from end-user inter-
actions. The volumes of data retrieved this way are so large that it motivated
the design and implementation of new data models and management systems
able to tackle issues such as scalability, high availability and partition tolerance.
In fact, the Web helped us to understand that the until now prevalent relational
model does not fit all the data management issues [24].

These new data stores are regrouped under the NOSQL label (but coSQL [17]
is another recently proposed name). This acronym stands for ’Not Only SQL’
and generally identifies data stores based on the Distributed Hash Table (DHT)
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model which provides a hash table access semantics. That is in order to access
and modify a data object, a client is required to provide the key for this object
and a management system will lookup the object using an equality match to the
required attribute key. The First successful NOSQL databases were developed
by Web companies like Google (with Big Table [6]) and Amazon (Dynamo [9]).
An important number of open source projects followed more or less inspired by
these two systems, e.g. MongoDB3, Cassandra4 which respectively correspond
to the document and column family categories. Nowadays, NOSQL systems are
used in all kinds of application domains (e.g. social networks, science, finance)
and are present in cloud computing environments. Hence, we consider that the
Web of Data can not miss the opportunity to address and integrate technologies
and datasets emerging from this ecosystem.

In this paper, we propose a data integration framework where the target
schema is represented as a semantic web ontology and the sources correspond to
NOSQL databases. The main difficulty in integrating these data sources concerns
their schemalessness and lack of a common declarative query language.

Concerning the schemalessness, although this provides for a form of flexi-
bility in term of data modeling, this makes the generation of correspondences
between a global and local schemata more involved. Thus a first contribution
of our work consists in generating a local schema for each integrated source
using an inductive approach. This approach uses non-standard description logic
(DL [2]) reasoning services like Most Specific Concept (MSC) and Least Concept
Subsumer (LCS) in order to generate a concept for a group of similar individuals
and to define hierarchies for these concepts. Our second contribution enables the
specification of a global ontology based on the local ontologies generated for each
data source. This global ontology results from the correspondences discovered
between concept definitions present in each local ontology.

Concerning the lack of a common declarative query language, we propose
a Bridge Query Language (BQL) that supports a translation from SPARQL
queries expressed over the global ontology to the possibly different query lan-
guages accepted at the sources. In general, document and column family databases
do not provide for a declarative query language like SQL. They rather propose a
procedural approach based on the use of specific APIs, for instance for the Java
language. Hence our last contribution is to present the main steps involved in
this transformation and to provide a sketch of the BQL language.

This paper is organized as follows. In Section 2, we present related works in
ontology based data integration. Section 3 provides some background knowledge
on NOSQL databases, non-standard DL reasoning services and some alignment
methods. Section 4 details our contributions in the design of our ontology-based
data integration system and thus provides for an overview of this system’s archi-
tecture. In Section 5, we present the query processing solution adopted for our
system. Section 6 concludes the paper and gives perspectives on future works.

3 http://www.mongodb.org/
4 http://cassandra.apache.org/
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2 Related work

To the best of our knowledge, this paper is a first attempt to integrate data stored
in NOSQL systems into an ontology based framework. Hence, in this section, we
focus on the broader subject of ontology-based data integration and concentrate
on solutions addressing the relational model. Most of the work dedicated to
bridging the gap between ontologies and relational databases concentrated on
defining mapping languages, query answering and its relationship with reasoning
over the ontology.

MASTRO [5] is the reference implementation for the Ontology-Based Data
Access (OBDA) approach. In OBDA, ontologies, expressed in Description Log-
ics, represent the conceptual layer of the data stored in relational databases. It
allows for both sound and complete conjunctive query answering over an ontol-
ogy by retrieving data from a relational databases. Most of the nice properties
of MASTRO come from the computational characteristics of DL-Lite which mo-
tivated the creation of OWL2QL, an OWL2 fragment. Nevertheless, MASTRO
requires that both the global ontology and relational schemata are known in
order to define semantic mappings.

In [10], the SHER system is presented as a system for scalable conjunctive
query answering over SHIQ ontologies where the ABox is stored in a relational
database management system. A main contribution of this work is to implement
an ABox summarization technique which improves the computational perfor-
mances of query answering.

In the Maponto tool [1], the authors propose a solution that enables to define
complex mappings from simple correspondences. This approach expects end-
users or an external software to provide mappings and then uses them to generate
new ones. Maponto is being provided with a set of relational databases and an
existing ontology.

Systems like MARSON [14] and RONTO [19] discover simple mappings by
classifying the relations of a database schema and validate the mapping consis-
tency that have been generated. Like Maponto, these systems require that the
target ontology is provided.

In comparison with these systems, our approach deals with the absence of a
schema at the sources and of global ontology. Moreover, while all systems based
on a relational model benefit from the availability of SQL, the existence of a
common query language for the sources can not be assumed in the context of
NOSQL databases.

3 Background

In this section, we present background knowledge concerning the two NOSQL
databases we are focusing on in this paper, namely document and column-
oriented stores. This is motivated by their ability to provide an efficient so-
lution to the scalability issue by enabling to scale out quickly. For both of these
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approaches, we model a similar use case dealing with the submission and review-
ing process of scientific conferences. Concerning ontology related operations, we
present non-standard reasoning services encountered in DL, i.e. MSC, LCS and
GCS, and provide information on methods used to align expressive ontologies.

3.1 Document oriented databases

Document oriented databases correspond to an extension of the well-known key-
value concept where in this case the value consists of a structured document.
A document contains hierarchically organized data similar to XML and JSON.
This permits to represent one-to-one as well as one-to-many relationships in
a single document. Therefore a complex document can be retrieved or stored
without using joins. Since document oriented databases are aware of stored data,
it enables to define document field indexes as well as to propose advanced query
features. The most popular document oriented databases are MongoDB (10gen)
and CouchDB (Apache).

Example 1 This document database (denoted docDB) stores data in 2 collec-
tions, namely Person and Document. In the Person collection, documents
are identified by the email address of the person and contains information
regarding the last name, first name, url, university, person type (i.e. either
a user, author, conference member or reviewer) and possibly a list of re-
viewed document identifiers. The documents in the Document collection are
identified by a ’doc’ prefix followed by a unique numerical value. For each
document, the system stores the title, email of the different authors (cor-
responding to keys in the Person collection), the abstract and full content
of the paper. Finally, a list of reviews is stored for each document. Fig. 1
presents a graphical representation of a document for each collection. In this
database, the reviews of a paper are stored within the paper document. This
is easily structured in a document store which generally supports the nesting
of documents. Similarly, the documents a person needs to review are stored
in Person documents, i.e. in writeReview.

3.2 Column-family databases

Column family stores correspond to persistent, sparse, distributed multilevel
hash maps. In column family stores, arbitrary keys (rows) are applied to arbitrary
key value pairs (columns). These columns can be extended with further arbitrary
key value pairs. Afterwards, these key value pair lists can be organized into
column families and keyspaces. Finally, column-family stores can appear in a very
similar shape to relational databases on the surface. The most popular systems
are HBase and Cassandra. All of them are influenced by Google’s Bigtable.

Example 2 Considering the kind of queries one can ask on this column family
(denoted colDB), the structure consists of 3 columns families: Person, Paper
and Review. The set of information stored in these column families is the
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Fig. 1. Extract of the document oriented database

same as in Example 1. The row key for the Person, Paper and Review are
respectively the email address of the person and system generated identifiers
for papers and reviews. All other information entries are stored in columns
with some of them being multi-valued. Fig. 2 provides a graphical represen-
tation of an extract of colDB. The Paper and Review column families have
several columns in common (abstract, content and submissionDate). But
while the authors column stores the list of authors of a paper, the author

column of reviewer stores the identifier of its reviewer.

3.3 Non-standard Reasoning Services

We present in this section the basic versions of Least Common Subsumer (LCS)
[18] , Most Specific Concept (MSC) [2] and Good Common Subsumer (GCS) [4].
The MSC of an individual consists in defining the least concept description that
the individual is an instance of.

Definition 1 Given concept terms C1, ..., Cn, the MSC of an individual a is a
concept term C iff
– C v Ci, for 1 6 i 6 n ;
– C is the most specific concept term with this property, i.e., if D is a

concept term such that Ci v D for 1 6 i 6 n, then C v D.

And, the LCS of a set of concepts is the least concept that subsumes all of
them, i.e., there is no sub-concept of this LCS that subsumes the set of concepts
too.
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Fig. 2. Extract of the column family database

Definition 2 Given concept terms C1, ..., Cn, the LCS of C1, ..., Cn is a concept
term C such that

– Ci v C for 1 6 i 6 n ;
– C is the least concept term with this property, i.e., if D is a concept

term such that Ci v D for 1 6 i 6 n, then C v D.

But, the LCS is very hard to process in practice. So, Baader [4] proposes an
algorithm named Good Common Subsumer (GCS) to compute an approximation
of LCS by determining the smallest conjunction of (negated) concept names
subsuming the conjunction of the top level concept names of each considered
concept. By computing the MSC and LCS of these individuals, more complex
concept descriptions can be added to the ontology [3].

3.4 Alignment methods

The heterogeneity between ontologies must be reduced in order to facilitate inter-
operability of applications based on these ontologies. For this purpose, semantic
correspondences between different entities belonging to two different ontologies
are required to be established. This is the goal of ontology alignment as pre-
sented in [12]. An alignment consists of a set of correspondences between pairs
of ontology entities. Two entities of each pair are connected by a semantic rela-
tion (e.g. equivalence, subsumption, incompatibility, etc.). Moreover, a similarity
measure can be associated to each correspondence to specify its trust. Then, a
set of correspondences (i.e. alignment) can be used to merge ontologies, migrate
data or translate queries from one to another ontology.
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In the literature, there are several alignment methods that can be catego-
rized according to techniques employed to produce alignments. The most early
methods are based on the comparison of linguistic expressions [11]. Another
aligner presented in [8] has taken into account annotations of entities defined
in ontologies. More recently, the methods introduced in [15], [22], [16] have ex-
ploited ontological structures related to concepts in question. These methods,
namely simple alignment methods, are the most prevalent at present. They de-
tect simple correspondences between atomic entities (or simple concepts) (e.g.
Human v Person, Female v Person). As a result, some kinds of semantic het-
erogeneity in different ontologies can be solved by using these classical alignment
methods.

However, simple correspondences are not sufficient to express relationships
that represent correspondences between complex concepts since (i) it may be
difficult to discover simple correspondences (or they do not exist) in certain cases,
or (ii) simple correspondences do not allow for expressing accurately relationships
between entities.

A second important issue is that generating a complex alignment has a certain
impact during the consistency checking of the system. Indeed, a reasoner such as
Pellet [23] or FaCT++ [25], running on a system consisting of two ontologies O1

and O2 and a simple alignment As, may reply that the system is not consistent.
But, this same reasoner, with the same ontologies O1 and O2, and with a complex
alignment Ac can deduce that the system is consistent.

Consequently, new works follow the way of complex alignment solutions such
as [20]. But, currently, they address the alignment of simple concept with a
complex concept, at best.

4 Architecture overview

In this section, we present the main components of our system and highlight
on the approaches used at each steps of the data integration processing. These
steps, depicted in Fig. 3, consist of the (1) creation of an ontology associated to
each data sources, (2) aligning these ontologies and (3) creating a global ontology
given these correspondences.

Finally, we present a query language enabling to retrieve information stored
in the sources from a query expressed over the global ontology.

4.1 Source ontology generation

As explained earlier, NOSQL databases are generally schemaless. Although this
provides flexibility for information storage, it makes the generation of associated
ontologies more involved. In fact, one can only use containers, i.e. collections
and column families in respectively document and column family databases, of
key/value pairs as well as key labels to deduce a schema. Our approach considers
that each container defines a DL concept and that each key label corresponds to
a DL property that can either be a data type or object one and whose domain
is the DL concept corresponding to its container.
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Fig. 3. Basic architecture of our data integration system

Example 3 Consider Example 1 (resp. Example 2), the following concepts are
automatically generated: Person and Document (resp. Person, Paper and
Review). Concerning DL properties, a firstName DL datatype property
will be created in the cases of both Examples 1 and 2 with a domain corre-
sponding to the Person DL concept. Additionally, a writeReview DL object
property is created with a domain and range corresponding to respectively
the Person DL and Paper concepts. This is due to the fact that the values
of the writeReview (doc101 and doc 104 in the case of the document iden-
tified by joe.doe@gmail.com) served as identifier of other documents. The
same approach applies for authors, author and paper in Example 2.

A modeling pattern frequently encountered in key/value stores supports the
discovery of complementary DL concepts and some subsumption relationships.
This pattern, henceforth denoted type definition, consists of a key whose range
of values is finite and which do not correspond to container identifiers, i.e. they
do not serve as foreign keys. We assume that each of these values specifies a DL
concept. For instance, this is the case of the type key in respectively Examples
1 and 2. Its set of possible values is {User, Author, ConfMember and Reviewer},
each of them corresponding to a DL concept. These concepts can be organized
into a hierarchy of concepts using methods of Formal Concept Analysis (FCA)
[13]. In a recent paper [7], we have emphasized on an FCA methodology for on-
tology mediation. Some features of this method are to create concepts that are
not in the source ontologies, to label the new concepts, and to optimize the re-
sulting ontology by eliminating redundant or irrelevant concepts. This approach
easily applies to the discover of DL concepts and their subsumption relation-
ships in the context of a type definition pattern. That is, tuples of the key of the
pattern (type in our example) correspond to objects in the FCA terminology
and their values provide FCA attributes. Then a Galois connection lattice can
easily be computed using the methods proposed in [7]. The nodes of this lat-
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tice correspond to DL concepts and arrows between them specify subsumption
relationships.

Example 4 We consider the document database of Fig.1. The document identi-
fied by key ’joe.doe@gmail.com’ has several type values (User, ConfMember,
Author and Reviewer) while the document identified by ’miles.davis@jazz.com’
is only characterized by the User value. Using the information coming from
different documents, one can discover the following DL concept subsump-
tions: Author v User
Reviewer v User
ConfMember v User

The method we have presented so far can be applied recursively to embedded
structures where the nested container is reified into an object.

At this point in the local ontology generation process, we have created an
ontology that is no more expressive than RDFS. We consider that using induction
over the instances of the source database, we can enrich the ontology and leverage
its expressiveness to a fragment of OWL2, namely OWL2EL. This is performed
using the approach proposed in [21] to compute the GCS wrt to local ontology
computed. This method exploits the TBox of the ontology and precomputes the
conjunction of concept names using FCA. One issue in this precomputation is
to handle a possibly very large set of FCA objects.

Ganter’s attribute exploration interactive algorithm [13] is an efficient ap-
proach for computing an appropriate representation of a concept lattice that
at certain stages asks contextualized questions to a domain expert. Instead of
relying on this interactive process, we propose other solutions that may be used
to select a subset of relevant objects. In some cases, the set of objects may be
of a reasonable size, (e.g. fitting into main memory) and a complete analysis is
possible. Nevertheless, in many situations, due to the size of individual data, a
complete analysis is not realistic and some heuristics need to be proposed. The
first naive approach one can think of is to randomly access a set of individu-
als. Apart from the hazardous results this approach could provide, it is not just
doable in hash table context where the key of the container needs to be known
a priori.

A simple heuristic consists in considering that the most frequently accessed
individuals are the most representative of the ontology to generate. In order to
discover this set, one can take advantage of the data store architecture, generally
distributed over several servers and supervised by several tools such as load
balancers. Using logs generated by these tools enables to identify a subset of the
individuals that are the most frequently accessed in the application.

Finally an incremental schema generation approach can be implemented.
That is each time a tuple is inserted or modified, the system checks if some
labels are being introduced or deleted into the schema. This approach imposes
that each update operation goes through this process.

At the end of this step, using an inductive approach, we have created a
schema for each NOSQL source. The goal of this schema is twofold: it enables
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the creation of DL ontology which can be serialized into an OWL2 fragment
(namely OWL2EL) and supports the definition between ontology entities (i.e.
DL concepts and properties) with elements of the NOSQL source (i.e. documents,
column families, columns and keys). Hence, the arrows linking the database and
ontology layers of Fig. 3 have been generated. The task of the next section
is to generate a global ontology via the discovery of alignments between local
ontologies.

4.2 Discovering Alignments between ontologies and global ontology
building

We now propose a new solution to detect both simple and complex correspon-
dences. To do this, we follow several steps. The first step consists in enriching
the two ontologies to be aligned using the IDDL reasoner [26]. This reasoner
allows to add subsumption relations which are implicit in ontologies (see Fig.4).

Fig. 4. Extract of review document family DB graph

The second step detects the simple correspondences using three classical
alignment processes. We use the three conventional aligners OLA5 [15], AROMA6[8]
et WN7. Each of them is based on a particular approach. The first aligner is a
basic aligner, which uses the linguistic resource WordNet, the second is based on
a structural approach and the third on the annotations associated to entities.

5 OWL-Lite Alignment
6 Association Rule Ontology Matching Approach
7 basic aligner of API alignment named JWNLAlignment
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Note that the last two chosen aligners are considered by OAEI8 among the best
alignment systems.

The last step detects the complex correspondences. Our idea is inspired from
simple alignment methods which are based on graphs [15],[22]. Since, from a finite
vocabulary, an infinite number of formulas can be processed, it is impossible to
know what are the relevant formulas to align. A possible solution is to try to
capture the semantic of OWL and to represent the constructors (for example,
subsumption, disjunction, restriction of cardinality) by a graph formalism. Then,
from the two graphs representing the ontologies to be aligned, it must search
relevant subgraphs which can be aligned taking into account their structures
and using a terminological similarity measure.

Proposition 1 Our first proposition allows correspondences between two com-
plex concepts (i.e. formulas) to be detected.

For example, Paper u ∃write.Author u ∃accept.Reviewer v Paper u ∃write.Author
can be deduced. The detection of this kind of matching is made by exploiting the
structure of graphs, which expresses the semantics of the OWL-DL ontologies.
Each graph consists of a set of subgraphs, which represent a formula. So, for all
pairs of concepts (C1, C2) belonging to the ontologies (O1, O2), it is necessary
to check whether their respective subgraphs can be aligned.

A subgraph of a given concept C consists of all concepts directly linked to C
by simple edges (subsumptions or disjunctions) or properties.

To align two subgraphs, one of the following cases must be checked:

1. The first subgraph SG1 subsumes the second subgraph SG2 (i.e. SG1 w
SG2). In this case, a relation of subsumption is generated;

2. The second subgraph SG2 subsumes the first subgraph SG1 (i.e. SG1 v
SG2). In this case, a relation of subsumption is generated, in the opposite
way of case 1;

3. The two subgraphs are equivalent. In other words, SG1 subsumes SG2 and
SG2 subsumes SG1. In this case, a relation of equivalence is generated (i.e.
SG1 ≡ SG2).

A subgraph SG1 subsumes a subgraph SG2 if the following conditions hold:

– All direct subclasses of SG1 are similar to direct subclasses of SG2,
– All disjoint subclasses of SG1 are similar to disjoint subclasses of SG2,
– All direct super classes of SG1 or their generalization are similar to direct

super classes of SG2 or their generalization,
– All direct properties of SG1 are similar to direct properties of SG2,
– All properties cardinalities of SG1 are equivalent or subsumed by properties

cardinalities of SG2,
– All domains or co-domains of these properties of SG1 are similar to domains

or co-domains or their generalizations in SG2.

8 Ontology Alignment Evaluation Initiative
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Proposition 2 This proposition allow us to detect correspondences between a
simple concept and a formula (e.g. SubmittedPaper v ∃submit.Author). It
is inspired by the research work presented in [20] with some simplification and
generalization. We search correspondences between simple concepts and formulas
based on syntactic similarities between concepts and properties. It is necessary
to use a purely syntactic similarity measure to compare concepts labels to prop-
erties labels. Moreover, a concept to align with a formula having a property
similar syntactically must be a concept specializing a concept already aligned to
a concept source or target of this property (or one of its super concept).

To generate the complex correspondences detected by these two propositions,
we used the language EDOAL9, which extends the alignment format proposed
by INRIA. This language can express complex structures between entities of
different ontologies.

Example .
Given two ontologies O1 and O2 built from NOSQL databases to be aligned

concerning a conference domain. OWL semantics of these ontologies are repre-
sented by graphs (cf. Fig. 4 of O1 from example 1) .

The following simple correspondences are detected during the first step:

O1 : Document ≡ O2 : Document
O1 : Person ≡ O2 : Person
O1 : Reviewer ≡ O2 : Referee
O1 : Review ≡ O2 : Review
O1 : Conference ≡ O2 : Conference
O1 : Submit ≡ O2 : Submit
O1 : WriteReview ≡ O2 : WriteReview
O1 : ConfMember ≡ O2 : ConfMember

The second step consisting in traversing the relevant subgraphs detects com-
plex correspondences such as these presented in Fig. 5 and 6. To do this, the
neighborhood of the graphs nodes are considered. For example, the generated
correspondence from the two subgraphs in Fig. 5 having respectively the nodes
O1 : Paper and O2 : Published as starting point is:

O1 : Paper u > 1 O1 : hasAuthor.O1 : contactPerson u > 1 O1 :
Submit.O1 : contactPerson w O2 : Published u > 1 O2 : Submit > .O2 :
Author u > O2 : isAuthorOf.O2 : Author u O2 : AcceptedBy.O2 :
ComitteMember

In the same way, the generated correspondence from the two subgraphs of
Fig. 6 having respectively the nodes O1 : Reviewer and O2 : Referee as starting
point is:

O1 : Reviewer u > 1 O1 : WriteReview.O1 : Review v O2 :
Referee u ∃ WriteReview.O2 : Review

9 http ://alignapi.gforge.inria.fr/edoal.html
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Fig. 5. Aligned subgraphs of concepts O1 : Paper and O2 : Published

Taking into account the ontologies representing NOSQL data sources and
their alignments, a global ontology GO is built. GO = (O,A) represents net-
worked ontologies 0 = {01, ..., On} through a set of alignments A = {A1, ..., Am}
where Ai is the set of correspondences between 0k and 0l(k 6= l).

5 Query processing

In this section, we present the query processing solution adopted in our ontology-
based data integration system. The approach consists in two consecutive trans-
lation operations.

The first one transforms end-user written SPARQL queries expressed over
the global ontology into a set of queries specified in the Bridge Query Lan-
guage (BQL). This translation uses the correspondences discovered during the
local and global ontology generation steps and occurrences of a set of RDF/S
properties (e.g. rdf:type, rdfs:subClassOf) in SPARQL queries. Given these
correspondences, a BQL query is generated over the local ontology of a NoSQL
source. Due to space limitations, we do not provide a thorough presentation of
BQL but rather sketch its main features. BQL is a high-level declarative query
language and has low-level, procedural programming flavor that enables to re-
trieve information from data repositories. In fact, a BQL program is similar to
specifying a query execution plan that can easily be translated into fully proce-
dural programs satisfying a given API and programming language. Following a
nested data model, a BQL program specifies a sequence of steps that each define
a single high level data operation. Like a relational algebra, each step is specified
via a relation definition which can serve as the input to another step. A main
construct of BQL is a foreach .. in operation which permits to iterate other
a defined relation and perform some associated operations. These operations
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Fig. 6. Aligned subgraphs of concepts O1 : Reviewer and O2 : Referee

generally consist in retrieving information from the database. This is specified
using a get operation defined over a given database and container. It contains 2
parameters: a set of filters expressed over source keys with standard comparator
(e.g. =, <, <=, 6=) and a set of attributes to retrieve from the resultset. In Ex-
ample 5, we highlight a SPARQL to BQL transformation given our conference
document database.

Example 5 Consider a query that retrieves titles of reviews written by a per-
son with last name Doe. This corresponds to the following SPARQL query
which is simplified for readability reasons:
SELECT ?t WHERE {?p rdf:type Person. ?p hasLastName ’Doe’.

?p writeReview ?r. ?r hasTitle ?title.}
The presence of a rdf:type property in the SPARQL query provides some
information about which source database and container we can create a BQL
query for. The query specifies that the ?p variable must of type Person which
is mapped to the person container of the document NoSQL database. This
query addresses a list of reviews hence an iteration needs to be performed
over the writeReview attribute of the Person container. This first step of
the BQL query is written as the following:
temp(paper) = docDB.Person.get({lastName=’Doe’},{writeReview})
Intuitively, the temp relation stores the list of review identifiers written by
the person whose last name is ’Doe’. The final result of the query is provided
by the ans relation:
ans(title) = foreach paper in temp : docDB.Paper.get({Key=paper},
{title}). That is for each identifier in the temp relation, find documents in
the Paper collection of the docDB database and retrieve its title.

The second translation corresponds to generating a program in a given pro-
gramming language (e.g. Java) from the different relations of a BQL query. Given
the procedural flavor of BQL, this translation is relatively straight forward but
one set of rules needs to be defined for each language and each NoSQL database.

SSWS 2011

135



So far, we have implemented rules for the Java language for both the MongoDB
and Cassandra stores. In the future, we aim to define such rules for more NoSQL
stores and programming languages (e.g. Python, Ruby).

6 Conclusion

This paper tackles the problem of integrating data stores in two of the most
popular NOSQL database categories, i.e. document and column family oriented
stores, in a Semantic Web context. It is well recognized that scalability is a main
issue for these systems. The most involved aspect of this integration concerns the
fact that these databases are schemaless and generally lack a common declarative
query language. Addressing this first issue, we emphasized that using existing
techniques like FCA together with non-standard DL inferences like GCS, we
could compute an ontology from the structure and instances of each databases
source. Using a novel alignment ontology method, we highlighted that these
ontologies can be linked to create a global ontology over which SPARQL queries
are expressed. Finally, a bridge query language supports a translation approach
to generate procedural queries, using specific APIs for each database source,
from SPARQL queries. We have already implemented this translation for the
Java language for both the MongoDB and Cassandra NOSQL databases and
we are currently working on query optimisation. Recently, several propositions
for a common NOSQL declarative query language are emerging (e.g. CQL for
Cassandra, unQL for CouchDB). Studying these specifications is on our list of
future works. Nevertheless, we consider that our data integration framework is
not complete until we incorporate another category of NOSQL stores: graph
databases.
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Abstract. Since the first publication of RDF researchers developed sys-
tems to store and to query RDF data efficiently on secondary storage.
First, they mapped the RDF data model to the relational one. As re-
lational databases performed poorly for generic RDF graphs researches
focused on native repositories using B-trees to index triples in most cases.
However, native repositories still calculate the result of a query by joining
single triples.
Because queries can be decomposed into star-like graph patterns we ar-
gue that managing RDF data as a set of subgraphs has advantages over
existing approaches. Thus, we propose a storage model that manages an
RDF graph as a collection of subgraphs and evaluates queries by joining
the results of star-like subqueries. In cause of the results of some prelim-
inary tests we are confident that a system based on our approach can
efficiently process queries.

1 Introduction

The Resource Description Framework (RDF) [15] is a recommendation of the
W3C that basically defines a data model for describing information about entities
(resources) across system boundaries. A piece of information is represented as a
triple consisting of the considered resource, a property resource, and the value
for that property (a resource or a literal). Every resource is uniquely identified by
a URI. The components of the triple are often referred to as subject, predicate,
and object, respectively. Having unique identifiers for resources a set of triples
forms a graph considering subjects and objects as nodes and predicates as edges.

Since the first publication of the RDF specification researchers developed
various systems to store and to query RDF data efficiently. At the beginning
they focused on mapping the RDF data model to relational one because rela-
tional database management systems (RDBMS) have been researched for many
many years and perform very well in almost all application scenarios. However,
researchers recognized soon that storing RDF data into a relational database
raises performance issues when querying the data (e.g., results in many (self)
joins). Due to the openness of the RDF data model it is also difficult to define
a fixed relational schema (e.g., many multivalued and optional properties).

As a consequence, researches developed hybrid and native RDF reposito-
ries. Hybrid RDF repositories use object-oriented features of object-relational
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databases to transfer parts of the RDF schema into the relational schema. In
contrast, native repositories do not rely on RDBMS at all but store the RDF
triples in a set of indexes, e.g., (specialized) B-trees. Native stores still calculate
the result of a query by iterating over the variable bindings of its triple patterns.
Thus, the processing is similar to the one of joins in RDBMS.

In this paper we present a native RDF repository that manages an RDF
graph as a collection of subgraphs and evaluates queries by joining the results
of star-like subqueries. We consider a subquery as star-like if it contains a basic
graph pattern that triple patterns have all the same subject (either resource URI
or variable). In contrast to existing approaches all triples matching a star-like
subqueries can be accessed by loading a single database page.

In Section 2 we give an overview of existing approaches to store RDF graphs.
Afterwards, we describe our approach: We outline first the design goals of our
storage model in Section 3. We describe then the storage model in detail (Sec-
tion 4) and explain basic operations on RDF graphs (Section 5). In Section 6 we
present an estimation of the required disc space for storing RDF data and ana-
lyze the complexity of the basic operations. In Section 7 we present and discuss
preliminary results of evaluating our approach. Finally, we conclude and give an
outlook to future work in the last section.

2 Related work

In this section we give a short overview of existing approaches to manage RDF
data. Hereby, we concentrate on repositories that store the data on secondary
storage and are designed to run on single machines (cf. Table 1). We exclude ex-
plicitely clustered approaches from our considerations because they are designed
for a different use case than our storage model and, thus, other challenges are in
the focus of research.

We can distinguish two main categories of RDF storage models: Relational
based and native approaches (cf. Figure 1). Regarding relational storage models
we can distinguish between schema oblivious, schema aware, and hybrid. Schema
oblivious approaches rely on a single database relation storing all triples. The
key advantage of this model is that any RDF model can easily be imported
without considering its schema. However, the query engine has to consider the
complete database for evaluating a query and large queries require expensive
self-join operations. Schema aware approaches convert the schema of an RDF
graph to a relational schema, e.g., the database contains a relation for each
property of the graph. Since the data is distributed over several relations the
query engine can selectively access the underlying RDF data for processing of
a query; although the resulting SQL queries get more complex. Thus, it can
answer queries more efficiently than in the schema oblivious case. In return for
efficient query processing changes of the RDF data require sophisticated update
operations because they may also affect the database schema (e.g., adding or
deleting relations). Hybrid approaches try to combine the advantages of the two
other models by using dedicated relations for certain (frequent) properties and
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System Reference Storage model Status

3store [11] schema oblivious open source, inactive
AllegroGraph [10] native commercial
Hexa-Store [24] native open source
HPRD [17] native scientific
Jena2 SDB [26] hybrid open source
Jena2 TDB [1] native open source
Kowari [27] native open source, inactive
Oracle [8] schema oblivious commercial
RDF-3X [20] triple index scientific
RDFSuite [2] hybrid inactive
RStar [18] hybrid scientific
Sesame [7] schema aware, native open source
System Π [28] native scientific
Virtuoso [21] native commercial
YARS2 [13] native scientific
N.N. [19] schema aware scientific

Table 1. RDF repositories and their storage model

RDF repositories

based on B-trees
native

schema aware

schema oblivious

based on RDBMS

RDF specific model

hybrid

Fig. 1. Categories of RDF storage models

storing the remaining triples in a single relation. The characteristics of query
processing are similar to the one in schema aware approaches. In each category
there exist several variations and optimizations which we do not discuss here
due to limited space.

Most native storage models rely on indexing triples (quadruples) in several
B-trees. In [12] the author came to the result that eight indexes are sufficient to
cover all possible access patterns to the data of named graphs. Only three are
needed if named graphs are not considered. Besides B-trees some other systems
such as RDF-3X use also other types of indexes (e.g., bitset indexes) to improve
query performance and to reduce the amount of disc space occupied by indexes.
So far only a few approaches considered indexing property paths separately [17]
but this may change with the next version of SPARQL. Besides storage models
based on B-trees there exist also approaches that propose different DBMS (e.g.,
deductive DBMS [25]).

In contrast to all mentioned approaches we propose a native RDF storage
model that groups related triples on a database page. In addition, all triples
matching a star-like subqueries can be accessed by loading a single database
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page. Another difference is that our indexes point to database pages containing
the triples rather than storing them.

3 Design goals

Although the storage models presented in the previous section are based on very
different access structures, we derived the following fundamental ideas and best
practices for realizing an RDF repository.

Reduce join operations. As a consequence of the triple based data model
joining triples is an essential operation. Causing significant costs during
query processing it is important minimizing the number of join operations.

Normalize URIs. Managing strings unmodified, e.g., URIs and literals, causes
performance problems because they are often long. On the one hand com-
parisons are expensive and on the other one they consume more disc space if
they occur often. Thus, strings are normalized in all performant repositories.

Adequate disc consumption. Although disc space is inexpensive nowadays
the system should deal with the disc space sparingly. Although replicating
data for indexing purposes improves query performance the time for import-
ing and updating data may increase.

Equal weighting of queries. A variable can occur at all positions in a triple
pattern. Although some positions are more common an RDF repository
should support all queries with similar performance.

Multivalued, optional properties. The semantics of RDF allow multiple val-
ues for a property of a resource [14]. In addition, it does not guarantees the
presence of a property. As a result RDF graphs have often an unpredictable
schema which the repository has nevertheless to handle efficiently.

Although (expensive) solid state discs allow random access to data nowadays
we also aim at reducing the number of IO operations. This goal is not induced
by the RDF data model but can be considered as a generally accepted rule for
improving query performance in database context.

4 Storage concept

To achieve the above design goals we exploit characteristics of RDF data and its
usage: (i) resources have unique identifiers, (ii) many properties are assigned to
a single resource, (iii) resources of the same rdf:type have similar properties,
and (iv) locality of queries.

The first characteristic is directly defined in the RDF specification and helps
us to locate a resource easily in our repository. The second one we derived from
the fact that RDF was designed to describe resources by defining their properties.
Taking the well-known DBpedia dataset as an example, we derived from Table 2
in [4] that the ration between the number of resources and the number of triples
is about 2.8 · 106 : 70.2 · 106 = 1 : 25. Our assumption is also supported by
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widely accepted benchmarks SP 2Bench [23] and BSBM [5] which are based on
real-world scenarios. The third point is of course only meaningful if the type is
not rdfs:Resource. It is based on the assumption that similar entities share
similar properties and, therefore, all entities are relevant to a query if one of
them is. The thought behind the last one being that queries are likely to be
a combination of star-like subqueries. As a consequence, a query engine has to
process several triples with the same subject.

The starting point of our storage model is the lowest level of database design,
the physical data organization on database pages (page for short). Developing
the storage model we focused mainly on reducing the number of join operations
during query processing and the number of pages loaded from secondary storage.
Instead of having tuples with a predefined set of attributes on a database page
as it is the case in relational databases we pay tribute to the openness of the
RDF data model and store a resource (subject) together with all properties and
their values on a page. Due to this organization of triples the query engine can
easily determine the one page containing all triples of a given resource and does
not need to perform join operations to retrieve them. In the unlikely event that
the triples belonging to a resource do not fit onto a page – a 32k page can store
about 8k triples – then the system creates an overflow page. As a consequence,
the storage model is independent of the underlying RDF schema, e.g., the system
can easily manage optional and multivalued properties. To optimize the number
of IO operations further we also group resources according to their rdf:type

because we think that queries refer often to same kind of entities. Both design
decisions increase the probability that a query engine finds relevant triples on
the currently processed page or on a recently loaded one.

In the following we formalize the mapping of RDF graphs to database pages.
First, we introduce the terms database page and database.

Definition 1 (Database page). A database page p is a persistent storage area
of a predefined size ‖p‖. We refer to the set of all pages as the symbol P.

Each database page is assigned a unique identifier. To express that a page p
contains a triple of an RDF graph, t ∈ G, we write t ∈ p. We refer to the size of
a page as ‖p‖ and to the number of triples per page as |p|. We use the notations
‖ts‖, ‖tp‖ and ‖to‖ to note the required space for the subject, predicate, or object
of a triple t, respectively.

Definition 2 (Database). A database D is defined as a set of database pages:
D = {p : p ∈ P}.

We write |D| to refer to the number of pages belonging to a database. Finally,
the following definition describes how triples are distributed onto pages.

Definition 3 (Storage mapping). Let G1, . . . , Gn ∈ G be RDF graphs and D
a database. The triples of the graphs are stored w.r.t. the following criteria:

(i) All triples t of a page p belong to the same graph Gi:

∀p ∈ D∀ti, tj ∈ p∃Gi ∈ {G1, . . . , Gn} : ti ∈ Gi ∧ tk ∈ Gi
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(ii) All resources ts of a page p have the same rdf:type τ :

∀p ∈ D∀ti, tj ∈ p : τ(tsi ) = τ(tsk)

(iii) All triples t having the same subject ts are stored on the same page p:

∀Gi ∈ {G1, . . . , Gn}∀ti, tk ∈ Gi : tsi = tsk ∧ ti ∈ p1 ∧ tk ∈ p2 ⇒ p1 = p2

(iv) URIs and literals are normalized using bijective mapping ι : I ∪ L→ N.

Figure 2 illustrates the mapping of an RDF graph to database pages. After
normalizing URIs and literals triples are stored on different pages according to
the type of their subject, e.g., page 2 contains only triples of proceedings. Thus,
pages are implicitly linked by these, e.g., ex:pers1 links the two pages.

Normalization

ID Value

1 ex:proc1

2 ex:proc2

3 ex:pers1

4 ex:pers2

5 foaf:person

6 "John Due"

7 . . .

PID 2: Proceeding PID 1: Person

2

1
3

3

4

6

5

Fig. 2. Mapping of an RDF graph to database pages (properties are omitted)

The internal structure of a page is schematically shown on the left side of
Figure 3. It is divided into head and body. The head contains metadata such as
the page ID as well as the types and the number of stored subject resources3.
The body contains the actual triples, however, split into their components. A
triple index is used to manage the relationship between subjects and their cor-
responding predicates and objects (right side of Figure 3). For example, the first
entry of the triple index contains the address of the first predicate/object of the
first subject, the second entry for the first predicate/object of the second sub-
ject, and so on. The advantages of this column-store-like layout are that it eases
the implementation (e.g., mapping a page to the domain model in a program-
ming language), subjects are not repeated, and the system can easily access all
components of the triples and iterate over them.

Besides the mapping of triples to pages we need also access structures al-
lowing an efficient localization of triples in the database. For this reason we
maintain indexes on subjects, predicates, and objects providing the addresses of
triples. In the case of indexing subjects it is sufficient to know a mapping from
a subject ID to the corresponding page because all triples of a given subject can
only occur on a single page. In the case of predicates and objects we use bitset
indexes that encode the address of matching triples (cf. Figure 4) – one bitset
for each distinct property and object.

3 A subject may have multiple types but all subjects on a page must have the same.
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Head

Page ID Type IDs #Subject

Body

Triple index

Subject IDs

Predicate IDs

Object IDs

o31o23o22o21o12o11

p31p23p22p21p12p11

s3s2s1

6520

0 2 4 6

Triple index

Subject IDs

Predicate IDs

Object IDs

Fig. 3. Internal structure of a page: Schematic representation (left) and detail view of
the body (right)

10…10…010

0 2 12 63

Slot of the subject Page ID

Fig. 4. Interpreting a position
within a bitset

Bitset indexes have the advantage that
the system can answer multidimensional point
queries efficiently by combining them (logical
AND or OR). Thus, it is possible locate effi-
ciently triples having a certain combination of
predicate and object or subjects having certain
objects as property values. We use the algo-
rithms of [29] to process bitsets in a compressed form.

For providing a fulltext search on literals the system has to maintain a ded-
icated index (e.g., a Lucene index) because bitsets are not very useful in this
case. Since text retrieval is well researched we do not consider it in this paper.

5 Operations

In this section we describe the most important operations on the previously
defined storage model: querying the repository as well as adding and removing
triples. Executing update operations the system has to ensure the consistency
of the database according to Definition 3.

Query processing. Regarding query processing we only consider basic graph pat-
terns in this paper because they form the fundamental building block of SPARQL
queries [22]. First of all we want to note that any query can be decomposed into
joins of star-like patterns – a special form is a single triple pattern. We do not
go into details on join algorithms at the moment because they are well-known
from relational databases.

To compute the variable bindings for a star-like basic graph pattern (BGP)
we distinguish two cases: (1) patterns with a given subject and (2) patterns
with a variable as subject. For queries of the first type (lines 4–6, Algorithm 1)
the query engine uses the subject index to determine the page ID storing the
triples with the given subject. Then, it loads this page from secondary storage
and generates the variable bindings by matching the BGP and the stored triples.
In the second case (lines 8–22) the query engine loads all bitsets corresponding
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to the constant predicates and objects of the query and computes their logical
AND. Based on the resulting bitset the query engine can determine the pages
which may contain relevant triples (line 19). It loads these pages one after the
other and scans them for matching subgraphs.

Algorithm 1 matchStarBGP(BGP bgp) : VariableBindings

1: bindings = ∅
2: tp = bgp.first {first triple pattern}
3: if (!isVariable(tp.subject)) then
4: address = subjectIdx.get(tp.subject)
5: page = load(address.pageId)
6: bindings = match(page, address.slot, tp)
7: else
8: bitset = ∼ 0 {bitset with all bits set}
9: for (TriplePattern tp : bgp) do

10: if (!isVariable(tp.predicate)) then
11: bitset &= predicateIdx.get(tp.predicate)
12: end if
13: if (!isVariable(tp.object)) then
14: bitset &= objectIdx.get(tp.object)
15: end if
16: end for
17:
18: pageIds = subjectIdx.get(bitset) {determine the page IDs of subjects}
19: for (pid : pageIds) do
20: page = load(pid)
21: bindings += match(page, tp)
22: end for
23: end if
24: return bindings

Algorithm 1 realizes only a naive approach to determine relevant pages. A
real query engine would also consider statistical data about resources. The query
engine can furthermore use bitset indexes to support evaluating filter expressions
at a very early stage, e.g., before loading any data from secondary storage.

Adding triples. Algorithm 2 gives the pseudocode for adding triples. Its input is
a normalized triple constructed by applying the mapping function to the triple.
Next, the system checks if the predicate of the new triple is rdf:type because this
information is required to locate an appropriate page for storing it. If the triple
does not contain type information then the type rdfs:Resource is assumed as
defined in [6] (line 1–4). Depending on the existences of triples having the same
subject as the new triple the system has either to load the corresponding page
(line 7) or to locate a page with an appropriate type using the predicate index
(line 9) – if such a page does not exist then a new one is allocated. The new triple
is then added to the page. Lines 13 and 15 handle two special cases: Balancing
the pages and restoring the storage constraints. In the first case the system has
to ensure that there is enough free space on the page to store the triple because
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a page can only store a limited number of triples. In the event of an overflow it
allocates a new page and distributes the triples as equally as possible over the
two pages. Hereby, it always guarantees the constraints of Definition 3. In the
second case the type constraint is violated, e.g., the new triple states a type of
the subject different from the types of the page. The new type of the subject
resource is determined as follows: τ(ts) = to ∪ τ(p). This type is used to find a
new page for storing all triples with the given subject. Finally, all indexes have
to be updated. Adding a completely new triple this step requires only updating
three index entries. In the worst case – pages need to be balanced – the system
has to update all index entries belonging to moved triples.

Algorithm 2 insertTriple(NormalizedTriple t) : void

1: type = rdf:resource

2: if (t.predicate = rdf:type) then
3: type = t.object
4: end if
5: pageId = subjectIdx.get(t.subject)
6: if (pageId) then
7: page = load(pageId)
8: else
9: page = findOrAllocatePage(type)

10: end if
11: addTriple(page, t)
12: if (type ∈ τ(page)) then
13: balancePage(page)
14: else
15: restoreTypeContraint(page, t) {pages are also balanced}
16: end if
17: updateIndexes(t)

Deleting triples. As illustrated in Algorithm 3 the system uses first the subject
index to locate the page containing the subject of the triple to be removed.
The corresponding page is then loaded from secondary storage and the triple is
deleted from the page (lines 3 and 4). Deleting triples can lead to underfull pages.
To avoid loading many almost empty pages during query processing the system
balances pages and ensures a minimal allocation. Furthermore, the predicate of
the triple may be rdf:type. In this case the system has to restore the consistency
of the repository (line 6). Finally, it has also to update the indexes – the best
and worst cases are similar to adding a triple.

6 Analysis

In this section we first estimate the disc space needed to store RDF data. We
look then at the complexity of the operations described in the previous section.
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Algorithm 3 deleteTriple(NormalizedTriple t) : void

1: pageId = subjectIdx.get(t.subject)
2: if (pageId) then
3: page = load(pageId)
4: deleteTriple(page, t)
5: if (t.predicate = rdf:type) then
6: restoreTypeContraint(page, t) {pages are also balanced}
7: else
8: balancePage(page) {removes empty pages}
9: end if

10: updateIndexes(t)
11: end if

6.1 Data complexity

We measure data complexity of our storage model in terms of allocated database
pages. To estimate the number of pages needed for storing an RDF graph we
first have to know how many triples can be stored onto a page. In the following
we consider only the size of the body of a page because the size of the head is
almost constant and negligible small in relation to the size of the body. Thus,
the number of triples that fit onto a page depends on the page size ‖p‖ and the
required space for triples m‖ts‖ + n(‖tp‖ + ‖to‖) with m being the number of
subjects and n being the number of triples. Since subject IDs are not repeated
we have a minimal (formula 1) and a maximal (formula 2) number of triples
per page, e.g., all triples have a distinct or the same subject, respectively. If the
space of a page is fully allocated then we can calculate these values as follows:

‖p‖ = m‖ts‖+ n(‖tp‖+ ‖to‖)
m=n
=⇒ nmin =

‖p‖
‖ts‖+ ‖tp‖+ ‖to‖

(1)

m=1
=⇒ nmax =

‖p‖ − ‖ts‖
‖tp‖+ ‖to‖

‖p‖�‖ts‖
=⇒ nmax ≈

‖p‖
‖tp‖+ ‖to‖

(2)

In Table 2 we compiled the approximate minimal and maximal numbers of
triples per page for typical page sizes. In this calculation the sizes of an ID and
an entry in the triple index are 8 and 2 bytes, respectively.

‖p‖ 8 kB 16 kB 32 kB 64 kB

∼ nmin 300 600 1,200 2,400
∼ nmax 500 1,000 2,000 4,000

Table 2. Number of triples per page

Given the above formula we can derive
formula for the minimal and maximal num-
ber of pages required to store an RDF graph
G (formula 3 and 4, respectively). However,
there is a lower bound (formula 5) for even
small graphs that is induced by Definition 3;
the system has to allocate at least one page for each type of resource (τG).
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|D|min =
∑
k∈τG

|{t ∈ G : τ(ts) = k}|
nmax

(3)

|D|max =
∑
k∈τG

|{t ∈ G : τ(ts) = k}|
nmin

(4)

|D|lb = |τG| (5)

Besides the space required to store the triples the indexes for subjects, prop-
erties, and objects occupy disc space as well. As already mentioned the subject
index contains only a mapping of subject IDs to page IDs; thus, a B-tree can be
used. Based on [3] the data complexity is O(N), N being the number of indexed
values. According to [4] DBpedia contains for example 2, 8 · 106 resources. As-
suming a page size of 16 kB and a pointer size of 8 bytes the subject index would
require about 2,740 pages and occupy 42 MB of disc space. Since the nodes of a
B-tree have typically a large number of entries, the system can hold at least the
first two levels of a B-tree in main memory.

The predicate and object indexes in contrast are based on bitset indexes.
Our estimations for the required disc space are based on the WAH compressed
bitset [29]. WAH bitsets are organized in words of 32 or 64 bits and are com-
pressed word by word. The author estimates the size of a bitset as 2N in the
worst case, e.g., all bits are set. To put the size of a bitset into relationship with
B-trees, Wu et al. [29] mentions that a B-tree occupies 3N ∼ 4N words. In the
context of our storage model N equals the number of managed triples. Due to
the characteristics of RDF data we can assume that the worst case will never
occur and the sizes of bitsets are much smaller. We can use the following formula
to calculate the number of pages occupied by an index:

|pBitset| =
‖w‖ · 2N
‖p‖

, ‖w‖= word size

Further compression strategies are applicable, e.g., K-of-N encoding, but they
would require decompression during query evaluation and, thus, increase the
overall processing time most likely.

In the proposed storage model we need a bitset for each distinct property
and object. Therefore, the system has to manage O(|P |N+ |O|N) bitsets, where
|P | and |O| are the number of properties and objects, respectively. We use a
B-tree to locate the bitset corresponding to a resource. Please note, Lemire et
al. assess in [16] that a system can efficiently manage even 100 million bitsets.

As an example, we determined the number of distinct properties and objects
of DBpedia (Version 3.4). It contains about 44 ·106 triples, about 52.500 distinct
properties, and 9.8 ·106 distinct objects (5.9 ·106 literals and 3.8 ·106 Resources).
Since the required space depends on the number of set bits, we also determined
the number of triples having a given property or object.

Only a few properties occurred in more that a thousand triples (cf. Table 3)
which is a very acceptable fraction w.r.t. bitsets. Assuming the worst case for

SSWS 2011

148



WAH bitsets – each set bit has to represented with 2 bytes – then a bitset with
1000 k set bits would require 250 pages and occupy 8 MB (page size 32 k). In
general, however, the system can access almost all bitsets (about 98.2 %) with
a single load operation.

cardinality > 1000k 500k > 100k > 50k > 10k > 5000
absolute 3 3 59 65 449 379
percentage 0.006 % 0.006 % 0.112 % 0.129 % 0.854 % 0.721 %

cardinality > 1000 > 500 > 100 > 50 > 10 ≤ 10
absolute 1688 1212 6560 4361 9098 32546
percentage 3.209 % 2.304 % 8.292 % 5.191 % 17.298 % 61.879 %

Table 3. Number of triples per property in DBpedia

Analyzing DBpedia w.r.t. objects we only considered resources because lit-
erals are separately stored in a fulltext index (cf. Table 4). In contrast to the
above numbers there are even fewer triples per object. The largest index has a
size of 0.8 MB and requires only 25 pages (page size 32 k). Thus, the system can
load actually all bitsets (about 99.9 %) accessing the disc once.

cardinality 500k > 100k > 50k > 10k > 5000
absolute 0 10 12 105 125
percentage 0.000 % 3 · 10−4 % 3 · 10−4 % 0.003 % 0.003 %

cardinality > 1000 > 500 > 100 > 50 > 10 ≤ 10
absolute 991 1228 10057 12010 93049 3.8 · 106

percentage 0.026 % 0.032 % 0.261 % 0.311 % 2.412 % 96.953 %

Table 4. Number of triples per object in DBpedia

6.2 Complexity of operations

In the following we analyze the complexity of the operations defined in Section 5
which we measure in number of pages loaded from and written to secondary
storage, including data pages as well as index pages. Before going into details of
operations, we want to note that the complexity of accessing B-trees is O(logbN)
where b is the fanout and N is the number of indexed values [3] because the
system has often to access B-trees to locate data pages.

Query processing. In the following we analyze only the complexity of Algorithm 1
which constructs variable bindings for star-like basic graph patterns. Since arbi-
trary basic graph patterns are decomposed into star-like pattern we have to add
the complexity of joining the variable bindings for arbitrary basic graph pattern.

The complexity of Algorithm 1 depends on if the subject of the pattern is
given. If it is known then the query engine has only to access the subject index (B-
tree) to find the corresponding data page. Independently of the pattern size, this
page contains all triples to answer the query. Thus, the complexity is O(logbN).
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In the case that the subject is not given the complexity is made up of (1) iden-
tifying the data pages to be loaded and (2) loading these pages to match the
pattern. To identify the relevant pages the query engine combines the bitsets
of the constant predicates and objects, e.g., a pages can only be relevant if it
contains all resources contained in the BGP. This step requires to locate the
relevant bitsets and to load them. In the worst case the complexity is as follows:

O((|tpQ|+ |t
o
Q|) logbN︸ ︷︷ ︸

#accesses B-tree

+ (|tpQ|+ |t
o
Q|)2N︸ ︷︷ ︸

#accesses bitsets

)

where |tpQ| and |toQ| are the numbers of constant predicates and objects, respec-
tively. The 2N in the second part is the complexity of accessing the bitsets. As
illustrated in the previous section these values are almost always very small, e.g.,
a page per bitset in the worst case. Thus, the complexity of step (1) depends
only on the number of constants of the BGP but not on the size of the database.
The complexity of step (2) is determined by the size of the solution O(|S|), e.g.,
in the worst case the query engine has to access a page per triple. However, since
we cluster the triples according to the type of the subject the worst case will
occur rarely. As a result the complexity of both steps is

O((|tpQ|+ |t
o
Q|) logbN + (|tpQ|+ |t

o
Q|)2N + |S|)

Adding and deleting triples Considering both operations only the following op-
erations are relevant for determining their complexity: (1) Locating and loading
of the affected page and writing it back, (2) updating the subject index, and
(3) updating the predicate and object indexes. Regarding the first two steps
the complexity is dominated by the operations on B-tree of the subject index
(O(logbN) because the system needs to read and to write only a few pages,
e.g., one page in the best case and two pages if balancing is required. In the
worst case of a type conflict the system has to find an appropriate page which
requires accessing the bitset of rdf:type and the one of the type resources. The
complexity is comparable to the one of a query. Considering the second step the
system has update two bitsets in the best case resulting in 2·2N

‖p‖ + 2·2N
‖p‖ read and

write operations – all bits being set. In the worst case when balancing is required
then the system has to access more pages. Their number depends on the number
of distinct predicates objects of the moved triples.

7 Evaluation

We implemented the proposed storage model in Java and run some preliminary
test to evaluate our approach. As illustrated in Figure 5 the key components of
our system are based on existing software. At the lowest level we use a Berkeley
DB for storing database pages, the subject index, as well as the bitsets of the
predicate and object indexes. The main reasons for a Berkeley DB are that it
can efficiently manage key value pairs – values can be arbitrary objects – and
we wanted to focus on implementing our storage model.
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Page Manager

ARQ
BGP operator

Jena2
TripleStore

Berkeley DB

Index

Fig. 5. Architecture of
the RDF repository

On top of the Berkeley DB we implemented a page
manager and an index manager. The page manager
is responsible for mapping page IDs (key) to pages
(value) and to convert them to Java objects. The index
manager maintains the subject, predicate, and object
indexes. In case of the subject index the key is a re-
source ID and the value a page ID; in case of the others
the key is a resource ID and the value is a bitset.

To reduce the effort for implementing components
of an RDF repository such as the RDF data model
and SPARQL query engine we adapted Jena2 and
ARQ [26], a SPARQL processor for Jena. Inside Jena we created the infras-
tructure for reading and writing RDF graphs using the presented storage model,
e.g., a TripleStore based on normalized triples. In the query processor ARQ we
had to replace the implementation of filtered BGPs because the original classes
could not take advantage of the new storage model. Thus, we implemented an
operator that recognizes star-like BGPs and evaluates them separately. If the
query contains several star-like pattern the join is currenty performed by ARQ.

We run some preliminary tests to validate the feasibility of our storage model.
Table 6 presents the processing time of evaluating star-like BGPs of different
sizes and varying result sizes; the subject was always a variable. The underly-
ing dataset was generated using BSBM [5] and containing 300 k triples. As a
reference we also present the processing times of the same queries using Jena
SDB [26] and RDF-3X [20]. The first one we chose because our system is based
on Jena + ARQ and RDF-3X because it is one of the most performant RDF
repositories. Looking at the result we feel confident that our storage model is
competitive. While the processing time of the other two systems increases with
larger BGPs the one of our system remains almost constant. The last query shows
that retrieving larger result sets increases the processing time significantly in our
system. Our explanation for this behavior is that the data distribution is not
favorable, e.g., a clustering of resources based on rdf:type is not sufficient.

Query |Q| |S| SDB RDF-3X ours

Q1 2 1,000 415 30 110
Q2 4 1,000 849 45 91
Q3 8 1,000 1577 63 151
Q4 11 402 4,440 138 104
Q5 5 20,000 11,000 846 2,042

Fig. 6. Processing time (ms) of BGPs
of different sizes and selectivities

Query |Q| |Filter| σ TDB ours

Q1 3 0 11,850 11,800
Q2 7 0 19,575 25,590
Q3 3 1 2.5 % 4,057 195
Q4 7 1 2.5 % 4,440 452
Q5 3 9 12 % 16,174 1,151
Q5 7 9 12 % 17,253 2,751

Fig. 7. Processing time (ms) of filtered
BGPs

Furthermore, we evaluated the processing of filtered BGPs to validate the
feasibility of using bitset indexes for predicates and objects. Since the indexes
store only URIs and bitsets are best suited for testing on equality the queries
consisted of a star-like pattern with and a filter expression containing zero, one,
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or nine predicates. For example, such filters are used to restrict resources to cer-
tain types. We constructed the filter expressions manually so that they selected
about 2.5 % or 12 % of the dataset (3.5 million triples). Table 7 gives the results
for these queries – in this test set we compared our system with Jena TDB only.
Comparing the processing times of the queries without a filter (rows 1 and 3)
and the one with a filter we are confident that the query engine was able to
reduce the number of candidate pages significantly.

8 Conclusion and future work

In this paper we presented a new approach for managing RDF data. Our storage
model is based on the assumption that a query will often involve several proper-
ties of a resource. Thus, we store all triples having the same subject on the same
database page. To ensure an efficient retrieval of triples we index them using
bitsets. We implemented our storage model using Jena and ARQ as framework.
Although we run only preliminary test – not being exhaustive – they indicate
that the presented model has advantages in computing the results of star-like
BGPs. The system can also process filter expression testing on equality efficiently.

However, our experiments also showed us that we are still open issues which
we address in our future work. For example, joins between two BGPs are cur-
rently computed by ARQ; its join algorithm performs very poorly. Another im-
portant topic is reducing the load time significantly. Besides these two topics
we also work on indexing graph pattern which could span over several star-like
pattern. In combination with our storage model the key advantage is that only
little information is needed even to index complex pattern, e.g., an index entry
would only consist of addresses of subject resources.
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querying scheme. In K. Böhm et al., editors, Proceedings of VLDB, pages 1216–
1227. ACM, September 2005.

9. I. F. Cruz, V. Kashyap, S. Decker, and R. Eckstein, editors. Proceedings of the
First International Workshop on Semantic Web and Databases, September 2003.

10. Franz Inc. Allegrograph rdfstoreTM, 2010. Zuletzt besucht am 16.3.2010.
11. S. Harris. SPARQL query processing with conventional relational database sys-

tems. In M. Dean et al., editors, Scalable Semantic Web Knowledge Base Systems,
volume 3807 of LNCS, pages 235–244, November 2005.

12. A. Harth and S. Decker. Optimized index structures for querying rdf from the web.
In Proceedings of the 3rd Latin American Web Congress. IEEE Press, October 2005.

13. A. Harth, J. Umbrich, A. Hogan, and S. Decker. Yars2: A federated repository
for querying graph structured data from the web. In K. Aberer et al., editors,
ISWC/ASWC, volume 4825 of LNCS, pages 211–224. Springer, November 2007.

14. P. Hayes. RDF Semantics, February 2004. W3C Recommendation.
15. G. Klyne and J. J. Carroll. RDF: Concepts and Abstract Syntax.

http://www.w3.org/TR/rdf-concepts/, 2004. W3C Recommendation.
16. D. Lemire, O. Kaser, and K. Aouiche. Sorting improves word-aligned bitmap

indexes. Data Knowl. Eng., 69(1):3–28, 2010.
17. B. Liu and B. Hu. HPRD: A High Performance RDF Database. In K. Li et al.,

editors, Int. Conference Network and Parallel Computing, volume 4672 of LNCS,
pages 364–374. Springer, September 2007.

18. L. Ma, Z. Su, Y. Pan, L. Zhang, and T. Liu. RStar: an RDF storage and query
system for enterprise resource management. In Int. Conference on Information and
Knowledge Management, pages 484–491, New York, NY, USA, 2004. ACM Press.

19. A. Matono, T. Amagasa, M. Yoshikawa, and S. Uemura. A path-based relational
RDF database. In Australasian conference on database technologies, pages 95–103,
Darlinghurst, Australia, Australia, 2005. Australian Computer Society, Inc.

20. T. Neumann and G. Weikum. The RDF-3X engine for scalable management of
RDF data. The VLDB Journal, 19(1):91–113, 2010.

21. OpenLink Software. Virtuoso, 2010. Zuletzt besucht am 16.3.2010.
22. E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for RDF, Januar

2008. W3C Recommendation.
23. M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel. sp2bench: A sparql perfor-

mance benchmark. In ICDE, pages 222–233. IEEE, 2009.
24. C. Weiss, P. Karras, and A. Bernstein. Hexastore: sextuple indexing for semantic

web data management. Proc. of the VLDB Endowment, 1(1):1008–1019, 2008.
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