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Abstract. Publishers of Linked Data require scalable storage and retrieval infras-
tructure due to the size of datasets and potentially high rate of lookups on popular
sites. In this paper we investigate the feasibility of using a distributed nested key-
value store as an underlying storage component for a Linked Data server which
provides functionality for serving Linked Data via HTTP lookups and in addi-
tion offers single triple pattern lookups. We devise two storage schemes for our
CumulusRDF system implemented on Apache Cassandra, an open-source nested
key-value store. We compare the schemes on a subset of DBpedia and both syn-
thetic workloads and workloads obtained from DBpedia’s access logs. Results
on a cluster of up to 8 machines indicate that CumulusRDF is competitive to
state-of-the-art distributed RDF stores.

1 Introduction

Linked Data refers to graph-structured data encoded in RDF (Resource Description
Framework1) and accessible via HTTP (Hypertext Transfer Protocol)[3]. Linked Data
leverages the general web architecture for data publishing and has become increasingly
popular for exposing data on the web. The Linking Open Data (LOD) cloud 2 lists
over 200 datasets and comprises billions of RDF triples. A basic variant for publishing
Linked Data is making an RDF file accessible via HTTP, e.g., by putting the file on a
standard web server.

Many datasets on the Linked Data web cover descriptions of millions of entities.
DBpedia [2], for example, describes 3.5m things with 670m RDF triples, and Linked-
GeoData [13] describes around 380m locations with over 2bn RDF triples. Standard file
systems are ill-equipped for dealing with these large amounts of files (each description
of a thing would amount to one file). Thus, data publishers typically use full-fledged
RDF triple stores for exposing their datasets online. Although the systems are in prin-
ciple capable of processing complex (and hence expensive) queries, the offered query
processing services are curtailed to guarantee continuous service3.

1 http://www.w3.org/RDF/
2 http://lod-cloud.net/
3 Restrictions on query expressivity are common in other large-scale data services, for ex-

ample in the Google Datastore. See http://code.google.com/appengine/docs/
python/datastore/overview.html\#Queries_and_Indexes.
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At the same time, there is a trend towards specialised data management systems tai-
lored to specific use cases [16]. Distributed key-value stores, such as Google Bigtable
[5], Apache Cassandra [10] or Amazon Dynamo [6], sacrifice functionality for simplic-
ity and scalability. These stores operate on a key-value data model and provide basic
key lookup functionality only. Some key-value stores (such as Apache Cassandra and
Googles Bigtable) also provide additional layers of key-value pairs, i.e. keys can be
nested. We call these stores nested key-value stores. As we will see, nesting is crucial
to efficiently store RDF data. Joins, the operation underlying complex queries, either
have to be performed outside the database or are made redundant by de-normalising
the storage schema. Given the different scope, key-value stores can be optimised for
the requirements involving web scenarios, for example, high availability and scalabil-
ity in distributed setups, possibly replicated over geographically dispersed data centres.
Common to many key-value stores is that they are designed to work in a distributed
setup and provide replication for fail-safety. The assumption is that system failures oc-
cur often in large data centres and replication ensures that components can fail and be
replaced without impacting operation.

The goal of our work is to investigate the applicability of key-value stores for man-
aging large quantities of Linked Data. We review Linked Data in Section 2 before we
present our main contributions:

– We devise two RDF storage schemes on Google BigTable-like (nested) key-value
stores supporting Linked Data lookups and atomic triple pattern lookups (Section
3).

– We compare the performance of the two storage schemes implemented on Apache
Cassandra [10], using a subset of the DBpedia dataset with a synthetic and a real-
world workload obtained from DBpedia’s access log (Section 4).

We discuss related work in Section 5 and conclude with a summary and an outlook
to future work in Section 6.

2 Linked Data

We first review basic Linked Data concepts. RDF is a data format for graph-structured
data encoded as (subject, predicate,object) triples. These triples are composed of
unique identifiers (URI references), literals (e.g., strings or other data values), and local
identifiers called blank nodes as follows:

Definition 1. (RDF Triple, RDF Term, RDF Graph) Given a set of URI references U , a
set of blank nodes B, and a set of literals L, a triple (s, p, o) ∈ (U∪B)×U×(U∪B∪L)
is called an RDF triple. We call elements of U ∪ B ∪ L RDF terms. Sets of RDF triples
are called RDF graphs.

The notion of graph stems from the fact that RDF triples may be viewed as labelled
edges connecting subjects and objects.

There are various serialisation formats for RDF, for example normative RDF/XML
and Notation3 (N3)[4]. We use the human-readable N3 in this paper. In N3, namespaces
can be introduced to abbreviate full URIs as namespaceprefix:localname, e.g., a
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parser expands foaf:name in combination with the syntactic definition of the names-
pace prefix to http://xmlns.com/foaf/0.1/name.

The N-Triples syntax4 is a subset of N3 (without namespaces declarations) where
RDF triples are written as whitespace separated RDF terms with a trailing ’.’. Brackets
(<>) denote URIs and quotes ("") denote literals. Blank node identifiers start with ‘ :’.

Definition 2. (Triple Pattern) A triple pattern is an RDF triple that may contain vari-
ables (prefixed with ‘?’) instead of RDF terms in any position.

Triple patterns can be used to express basic RDF queries. For example, a triple
pattern ?s foaf:name ?n . matches all triples with a foaf:name predicate. In
total there are eight possible patterns for RDF triples (where s,p,o denote a constant
and ? a variable): (spo), (sp?), (?po), (s?o), (?p?), (s??), (??o), (???). Queries in
SPARQL5 can be translated to query plans involving triple pattern lookups. However,
we exclude full SPARQL query processing capabilities as our goal is to provide scalable
Linked Data access.

Linked Data refers to principles [3] that mandate that things (entities or concepts)
are identified via HTTP URIs. When dereferencing the URI t denoting a thing, the web
server shall return an RDF graph g describing t; g should contain links to other URIs to
enable decentralised discovery of resources.

There is a correspondence (in URI syntax or via HTTP redirects) between t and
the information resource s which represents that data source of a graph. For an exam-
ple of a syntactic correspondence consider the resource URI http://harth.org/
andreas/foaf#ah which is described at the information resource URI http://
harth.org/andreas/foaf. The former denotes a person and the latter denotes
the physical data source which contains the RDF graph. HTTP redirects are another way
for ensuring the correspondence; a user agent performs a lookup on URI t, and the web
server answers with a new location for the data source s. User agents specify their pre-
ferred content format via HTTP’s Accept header for content negotiation. For example,
a lookup on http://xmlns.com/foaf/0.1/knows redirects to a HTML file
http://xmlns.com/foaf/spec/index.html when dereferenced via a Web
browser, or to an RDF/XML file http://xmlns.com/foaf/spec/index.rdf
when accessed via an RDF-aware client.

?s < u r i >
?p1

?o
?p2

Fig. 1. Illustration of object-subject lookups with <uri> as constant.

What should be included in the graph g is only lightly specified6. A method which
can be regarded as current best practice is employed by DBpedia, which, given a URI,

4 http://www.w3.org/TR/rdf-testcases/#ntriples
5 http://www.w3.org/TR/rdf-sparql-query/
6 [3] advises to “provide useful information”
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returns (i) all triples with the given URI (or its associated information URI) as subject
and (ii) some triples with the given URI as object are returned (Figure 1). Such a lookup
translates to a union of two triple pattern lookups (or four when including the associated
information URI lookups): (i) a (s??) lookup on the SPO index and (ii) a (??o) lookup.

Another method called “Concise Bounded Description” [15] proposes to return all
triples which contain the given URI on the subject position with provisions to ensure
that connected blank nodes and reified statements are returned. How to include the
handling of blank nodes and reified statements in our method is subject to further work.

3 Storage Layouts

In the following we describe indexing schemes for RDF triples on top of nested key-
value stores. The goals for the index scheme are:

– To cover all six possible RDF triple pattern with indices to allow for answering
single triple patterns directly from the index. In other words, we aim to provide a
complete index on RDF triples [8].

– To employ prefix lookups so that one index covers multiple patterns; such a scheme
reduces the number of indices and thus index maintenance time and amount of
space required.

Ultimately, the index should efficiently support basic triple pattern lookups and (as
a union of those) Linked Data lookups which we evaluate in Section 4.

3.1 Nested Key-Value Storage Model

Since Google’s paper on Bigtable [5] in 2006, a number of systems have been developed
that mimic Bigtable’s mode of operation. Bigtable pioneered the use of the key-value
model in distributed storage systems and inspired systems such as Amazon’s Dynamo
[6] and Apache’s Cassandra [10]. We illustrate the model in Figure 2.

We use the notation { key:value } to denote a key-value pair. We denote con-
catenated element with, e.g., sp, constant entries with ’constant’ and an empty
entry with -. The storage model thus looks like the following:

{ row key : { column key : value } }

Systems may use different strategies to distribute data and organise lookups. Cas-
sandra uses a distributed hashtable structure for network access: storage nodes receive
a hash value; row keys are hashed and the row is stored on a node which is closest in
numerical space to the row key’s hash value. Only hash lookups thus can be performed.
Although there is the possibility for configuring an order preserving partitioner for row
keys, we dismiss that option, as skewed data distribution easily can lead to hot-spots
among the storage nodes.

Another restriction is that entire rows are stored on a single storage node - data with
the same row key always ends up on the same machine. Columns, on the other hand,
are stored in order of their column keys, which means that the index allows for range
scans and therefore prefix lookups.
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Fig. 2. Illustration of key-value storage model comprising rows and columns. A lookup
on the row key (k) returns columns, on which a lookup on column keys (c) returns
values (v).

Please note that keys have to be unique; both row keys and column keys can only
exist in the index once, which has implications on how we can store RDF triples.

Cassandra has two further features which our index schemes use: supercolumns and
secondary indices. Supercolumns add an additional layer of key-value pairs; a storage
model with supercolumns looks like the following:

{ row key : { supercolumn key : { column key : value }}}

Supercolumns can be either stored based on the hash value of the supercolumn key or
in sorted order. In addition, supercolumns can be further nested.

Secondary indices, another feature of Cassandra we use for one of the storage lay-
outs, allow to map column values to row keys:

{ value : row key }

Applications could use the regular key-value layout to also index values to row keys,
however, secondary indices are “shortcuts” for such indices. In addition, secondary in-
dices are built in the background without requiring additional maintenance code.

For an introduction to more Cassandra-specific notation we refer the interested
reader to the Cassandra web site7.

We identify two feasible storage layouts: and one based on supercolumns (“Hierar-
chical Layout”), and one based on a standard key-value storage model (“Flat Layout”),
but requiring a secondary index given restrictions in Cassandra.

3.2 Hierarchical Layout

Our first layout scheme builds on supercolumns.

7 http://wiki.apache.org/cassandra/DataModel
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The first index is constructed by inserting (s, p, o) triples directly into a supercol-
umn three-way index, with each RDF term occupying key, supercolumn and column
positions respectively, and an empty value. We refer to that index as SPO, which looks
like the following:

{ s : { p : { o : - } }

For each unique s as row key, there are multiple supercolumns, one for each unique
p. For each unique p as supercolumn key, there are multiple columns, one for each o as
column key. The column value is left empty.

Given that layout, we can perform (hash-base) lookups on s, (sorted) lookups on p
and (sorted) lookups on o.

We construct the POS and OSP indices analogously. We use three indices to satisfy
all six RDF triple patterns as listed in Table 1. The patterns (spo) and (???) can be
satisfied by any of the three indices.

Triple Pattern Index
(spo) SPO, POS, OSP
(sp?) SPO
(?po) POS
(s?o) OSP
(?p?) POS
(s??) SPO
(??o) OSP
(???) SPO, POS, OSP

Table 1. Triple patterns and respective usable indices to satisfy triple pattern

3.3 Flat Layout

We base our second storage layout on the standard key-value data model. As columns
are stored in a sorted fashion, we can perform range scans and therefore prefix lookups
on column keys. We thus store (s, p, o) triples as

{ s : { po : - } }

where s occupies the row-key position, p the column-key position and o the value posi-
tion.

We use a concatenated po as column key as column keys have to be unique. Con-
sider using { s : { p : { o } } } as layout, which p as column key and o as
value. In RDF, the same predicate can be attached to a subject multiple times, which
violates the column key uniqueness requirement. We would like to delegate all low-
level index management to Cassandra, hence we do not consider maintaining lists of
o’s manually.
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The SPO index satisfies the triple patterns (s??), (sp?) and (spo) with direct lookups.
To perform a (sp?) lookup on the SPO index, we look for the column keys matching p
(via prefix lookup on the column key po) on the row with row key s.

We also need to cover the other triple patterns. Thus, two more indices are con-
structed by inserting (p, o, s) and (o, s, p) re-orderings of triples, leading to POS and
OSP indices. In other words, to store the SPO, POS and OSP indices in a key-value
store, we create a column family for each index and insert each triple three times: once
into each column family in different order of the RDF terms.

There is a complication with the POS index though, because RDF data is skewed:
many triples may share the same predicate [9]. A typical case are triples with rdf:type
as predicate, which may represent a significant fraction of the entire dataset. Thus, hav-
ing P as the row key will result in a very uneven distribution with a few very large
rows. As Cassandra is not able to split rows among several nodes, large rows lead to
problems (at least a very skewed distribution, out of memory exceptions in the worst
case). The row size may exceed node capacity; the uneven distribution makes load bal-
ancing problematic. We note that skewed distribution may also occur on other heavily
used predicates (and possibly objects, for example in case of heavily used class URIs),
depending on the dataset. For an in-depth discussion of uneven distribution in RDF
datasets see [7].

To alleviate the issue, we take advantage of Cassandra’s secondary indexes.
First, we use PO (and not P) as a row key for the POS index which results in smaller

rows and also better distribution, as less triples share predicate and object than just the
predicate. The index thus looks like the following:

{ po : { s : - } }

In each row there are is also a special column ’p’ which has P as value:

{ po : { ’p’ : p } }

Second, we use a secondary index which maps column values to row keys, resulting
in an index which allows for retrieving all PO row keys for a given P. Thus, to perform
a (?p?) lookup, the secondary index is used to retrieve all row keys that contain that
property. For (?po) lookups, the corresponding row is simply retrieved.

In effect, we achieve better distribution at the cost of a secondary index and an
additional redirection for (?p?) lookups.

4 Evaluation

We now describe the experimental setup and the results of the experiments. We perform
two set of experiments to evaluate our approach:

– first, we measure triple pattern lookups to compare the hierarchical (labelled Hier)
and the flat storage (labelled Flat) layout; and

– second, we select the best storage layout to examine the influence of output format
on overall performance.
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4.1 Setting

We conducted all benchmarks on four nodes in a virtualised infrastructure (provided via
OpenNebula8, a cloud infrastructure management system similar to EC2). Each virtu-
alised node has 2 CPUs, 4 GB of main memory and 40 GB of disk space connected to
a networked storage server (SAN) via GPFS9. The nodes run Ubuntu Linux. We used
version 1.6 of Sun’s Java Virtual Machine and version 0.8.1 of Cassandra. The Cassan-
dra heap was set to 2GB, leaving the rest for operating system buffers.. We deactivated
the Cassandra row cache and set the key cache to 100k. The Tomcat10 server was run
on one of the cluster nodes to implement the HTTP interface.

Apache JMeter11 was used to simulate multiple concurrent clients.

4.2 Dataset and Queries

For the evaluation we used the DBpedia 3.6 dataset12 excluding pagelinks; characteris-
tics of that DBpedia subset are listed in Table 2. We obtained DBpedia query logs from
2009-06-30 to 2009-10-25 consisting of 87,203,310 log entries.

Name Value
distinct triples 120,436,315
distinct subject 18,324,688
distinct predicates 42,004
distinct objects 40,531,020
Table 2. Dataset characteristics

We constructed two query sets:

– for testing single triple pattern lookups, we sampled 1 million S, SP, SPO, SO, O
patterns from the dataset;

– for Linked Data lookups we randomly selected 2 million resource lookup log en-
tries from the DBpedia logs (which, due to duplicate lookups included in the logs,
amount to 1,241,812 unique lookups).

The triple pattern lookups were executed on CumulusRDF using its HTTP interface.
The output of such a lookup is the set of triples matching the pattern, serialised as
RDF/XML.

The output of a Linked Data lookup on URI u is the union of two triple pattern
lookups: 1) all triples matching pattern (u??) and 2) a maximum of 10k triples match-
ing (??u). The number of results for object patterns is limited in order to deal with the

8 http://opennebula.org/
9 http://www-03.ibm.com/systems/software/gpfs/

10 http://tomcat.apache.org/
11 http://jakarta.apache.org/jmeter/
12 http://wiki.dbpedia.org/Downloads36
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skewed distribution of objects, which may lead to very large result sets. A similar lim-
itation is used by the official DBpedia server (where a maximum of 2k triples in total
are returned).

4.3 Results: Storage Layout

Table 3 shows the size and distribution of the indices on the four machines. The row
size of a Cassandra column family is the amount of data stored for a single row-key. For
example, for the OSP index, this is the number of triples that share a particular object.

Index Node 1 Node 2 Node 3 Node 4 Std.Dev. Max. Row
SPO Hier 4.41 4.40 4.41 4.41 0.01 0.0002
SPO Flat 4.36 4.36 4.36 4.36 0.00 0.0004
OSP Hier 5.86 6.00 5.75 6.96 0.56 1.16
OSP Flat 5.66 5.77 5.54 6.61 0.49 0.96
POS Hier 4.43 3.68 4.69 1.08 1.65 2.40
POS Sec 7.35 7.43 7.38 8.05 0.33 0.56
POS Flat - - - - - -

Table 3. Index size per node in GB. POS Flat is not feasible due to skewed distribution
of predicates. The size for POS Sec includes the secondary index.

The load distribution shows several typical characteristics of RDF data and directly
relates to the dataset statistics from Table 2. The small maximum row size for SPO
shows that there are very few triples that share a subject. The large maximum row size
of the OSP index indicates that there are a few objects that appear in a large amount of
triples, i.e., the distribution is much more skewed (this is usually due the small number
of classes that appear as objects in the many rdf:type triples).

Here, we can also see the difference between the hierarchical and secondary POS
indices. The hierarchical POS index only uses the predicate as key, leading to a very
skewed distribution (indicated by the maximum row size) and a very uneven load dis-
tribution among the cluster nodes (indicated by the high standard deviation). The POS
index using a secondary index fares much better as it uses the predicate and object as
row key. This validates the choice of using secondary index for POS over the hierarchi-
cal layout.

4.4 Results: Queries

The performance evaluation consists of two parts: first, we use triple pattern lookups to
compare two CumulusRDF storage layouts and, second, we examine the influence of
output formats using Linked Data lookups.

Triple Pattern Lookups Fig. 3 shows the average number of requests/s for the two
CumulusRDF storage layouts (flat and hierarchical) for 2, 4, 8, 16 and 32 concurrent
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Fig. 3. Requests per second for triple pattern lookups with varying number of clients.

clients. Overall, the flat layout outperforms the hierarchical layout. For 8 concurrent
clients, the flat layout delivers 1.6 times as many requests per second as the hierarchi-
cal layout. For both layouts the number of requests per second does not increase for
more than 8 concurrent clients, indicating a performance limit. This may be due to the
bottleneck of using a single HTTP server (as we will see in the next section).
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Fig. 4. Average response times per triple pattern (for 8 concurrent clients). Please note
we omitted patterns involving the POS index (P and PO). Error bars indicate the stan-
dard deviation.

Fig. 4 shows the average response times from the same experiment, broken down
by pattern type (S, O, SP, SO and SPO). This shows the differences between the two
CumulusRDF storage layouts. While the hierarchical layout performs better for S, O
and SP patterns, it performs worse for SO and SPO patterns. The worse performance
for SO and SPO is probably due to inefficiencies of Cassandra super columns. For
example, Cassandra is only able to de-serialise super columns as a whole, which means
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for SPO lookups all triples matching a particular subject and predicate are loaded. This
is not the case for the flat layout (which does not use super columns): here, Cassandra
is able to load only a single column, leading to much better response times.

Linked Data Lookups Fig. 5 shows the average number of requests per second of
the flat layout of CumulusRDF with two different output formats: RDF/XML and N-
Triples. As CumulusRDF stores RDF data in N3 notation the N-Triples output is cheaper
to generate (for example, it does not require the escaping that RDF/XML does). This
is reflected in the higher number of lookups per second that were performed using
N-Triples output. The difference between the two output format is more pronounced
for a higher number of concurrent clients: for 4 clients N-Triples is 12% faster than
RDF/XML, whereas for 8 clients the difference is 26%. This indicates that the per-
formance is mainly limited by the Tomcat server, whose webapp performs the output
formatting.
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Fig. 5. Requests per second Linked Data lookups (based on flat storage layout) with
varying number of clients (including measure of effect of serialisation).

4.5 Conclusion

Overall, the evaluation shows that the flat layout outperforms the hierarchical layout.
We also see that Apache Cassandra is a suitable storage solution for RDF, as indicated
by the preliminary results. As the different layouts of CumulusRDF perform differently
for different types of lookups, the choice of storage layout should be made considering
the expected workload. From the experiments we can also see that the output format
also has a large impact on performance. It may be beneficial to store the RDF data in
an already escaped form if mainly RDF/XML output is desired.
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5 Related Work

A number of RDF indexing schemes have been devised. YARS [8] described the idea
of “complete” indices on RDF with context (quads)13, with an index for each possible
triple pattern. Similar indices are used by RDF-3X [11] and Hexastore [17]. All of these
systems are built to work on single machines. In our work we use complete indices for
RDF triples, implemented in three indices over a distributed key-value store.

Abadi et al. introduced an indexing scheme on C-Store for RDF [1] called “vertical
partitioning”, however, with only an index on the predicate while trying to optimise
access on subject or object via sorting of rows. The approach is sub-optimal on datasets
with many predicates as subject or object lookups without specified predicate require a
lookup on each of the predicate indices. For a follow-up discussion on C-Store we refer
the interested reader to [12].

The skewed distribution for predicates on RDF datasets and the associated issues in
a distributed storage setting have been noted in [9].

Stratustore is an RDF store implemented over Amazon’s SimpleDB [14]. In contrast
to Stratusstore, which only makes use of one index on subject (and similarly the RDF
adaptor for Ruby14), we index all triple patterns. In addition, Cassandra has to be set up
on a cluster while SimpleDB is a service offering, accessible via defined interfaces.

6 Conclusion and Future Work

We have presented and evaluated two index regimen for RDF on nested key-value
stores to support Linked Data lookups and basic triple pattern lookups. The flat index-
ing scheme has given best results; in general, our implementation of the flat indexing
scheme on Apache Cassandra can be seen as a viable alternative to full-fledged RDF
stores in scenarios where large amounts of small lookups are required. We are work-
ing on packaging the current version of CumulusRDF for publication as open source at
http://code.google.com/p/cumulusrdf/. We would like to add function-
ality for automatically generating and maintaining dataset statistics to aid dataset dis-
covery or distributed query processors. Future experiments include measures on work-
loads involving inserts and updates.
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