SSWS 2011

RDF Literal Data Types in Practice

Tan Emmons, Suzanne Collier, Mounika Garlapati, and Mike Dean

Raytheon BBN Technologies, Inc., Arlington, VA 22209, USA
{iemmons,scollier,mgarlapa,mdean}@bbn.com

Abstract. One of the more mysterious aspects of RDF (Resource De-
scription Framework) is typed literals. For instance, confusion over the
difference between a plain character string (“foo”) and a string that is ex-
plicitly typed (“foo”” "xsd:string) is common. Also, questions often arise
about comparisons between literals of the various numeric types (e.g.,
long, integer, decimal, and float). This paper explores how several pop-
ular triple stores handle literals via direct testing, and also compares
their behavior to the relevant standards. Along the way, we highlight a
number of implementation inconsistencies and some surprising aspects
of the standards themselves.

1 Introduction

One of the more mysterious aspects of RDF (Resource Description Frame-
work) [14] is typed literals. For instance, new and even moderately expe-
rienced Semantic Web practitioners often ask questions like these:

— What is the difference between a plain character string (“foo”) and a
string that is explicitly typed (“foo”" "xsd:string)?

— Under what conditions can literals of the various numeric types (long,
integer, decimal, float, etc.) be compared?

— Can literals with different lexical forms but the same value, such as
“477" "xsd:decimal and “47.0”" "xsd:decimal, be compared?

While using our own Parliament triple store [1], we have wrestled with
these questions from time to time, and so decided to investigate this topic
thoroughly. In particular, we wanted to understand how other triple stores
implement literal data types, and compare this against both our own im-
plementation and the standards themselves. We give a summary of the
relevant portions of the standards in Section 2, and then present our em-
pirical results in Section 3. Along the way, we highlight a number of im-
plementation inconsistencies and some surprising aspects of the standards
themselves.

SSWS 2011

2 Literal Data Types in the Standards

All literals in RDF have a lexical form encoded as a Unicode string, and
are either typed or plain [14]. A plain literal is a lexical form with an
optional language tag (“foo” or “foo”@en), whereas a typed literal is a
lexical form together with a data type URI (“foo”" "xsd:string). A data
type defines a value space, the set of possible values, and a lexical space,
the set of valid lexical forms, for literals of that type. RDF defines a set of
data types by borrowing from the XSD specification [3], and most typed
literals use one of these data types. Figure 1 shows the complete XSD
type hierarchy. RDF defines one other data type, rdf:XMLLiteral, and
also allows user-defined data types.

In addition, some RDF serializations such as Turtle [2] allow unquoted
literal forms. In reality, these are not separate kinds of literals, but syn-
tactic shortcuts for certain typed literals. For instance:

— An unquoted 3 is a shortcut for “3”" “xsd:integer
— An unquoted 3.14 is a shortcut for “3.14”" “xsd:decimal
— An unquoted true is a shortcut for “true”” “xsd:boolean

Because SPARQL syntax is based on Turtle, these shortcuts are valid
within SPARQL queries [20].

In the absence of entailment, RDF and OWL maintain that literals
are only equal when both their lexical form and data type are equivalent.
The RDF specification states that two literals are equal if and only if all
of the following conditions hold [14]:

— The two lexical forms compare equal, character by character

Either both or neither have language tags

— The language tags, if any, compare equal

— FKither both or neither have data type URIs

— The two data type URISs, if any, compare equal, character by character

This means that any two typed literals must have exactly the same
lexical form and data type URIs to be considered equal. OWL follows
similar equality rules, declaring “Two literals are structurally equivalent
if and only if both the lexical form and the data type are structurally
equivalent; that is, literals denoting the same data value are structurally
different if either their lexical form or the data type is different.” [15]

Although these are the strict rules of literal equality, by applying the
RDF D-Entailment regime to XSD data types, the equality rules become
more flexible [11]|. Note that this entailment regime applies only to XSD

SSWS 2011

1
|all complex types | anySimpleType

|durat:10n | |dat:eTim ”time | |d.at:e ”gi’earmnt:h ||g¥ear ”gmnt:hDay ||gl)ay”gmnth |

|boole&n Hhs.aeé%inuy Elhexﬁimry ”float | |dnu.h.i.e ”mleRI | |QNa.me | |HOT&TIOH |

strj_ngl |deci_mal

1
|na:ma.l.:l.=ed5tring 1
1]

I |
InDnPusitj_veInteger t long |ncn]egativeIntegec I
T T 1

|Language | [Wame | |marokEN | Inegat;veInteger [|unsj.gned1.ong |[positiveInteger |
I I 1 1

1 1 1 1
[HCHame |[mMTOKERS | [short | [unsignedInt |
| | |
1 1
1 1
e [mmigmedmroes |
1 [] 1
1 1
[IDREFS | [ENTITIES | unsignedByte

urtypes TT==== derived types

built-in primitive types sibling types
built-in derived types

complex types

OO0 M

Fig. 1. Type Hierarchy of XSD Data Types [3]

SSWS 2011

data types, and adds nothing to comparisons of literals with language tags.
Thus this paper will not discuss language-tagged literals any further. XML
schema data types are defined in a hierarchical structure, with base types
and derived types (see Figure 1). An XML schema derived type refers
to a subset of the value space of its base type. Therefore, two literals
that have the same primitive base data type and the same lexical forms
are equal [3]. For example, because both int and byte are derived from
decimal, “25”" “xsd:byte is equivalent to “25”" “xsd:int. Additionally, RDF
Semantics explicitly equates plain literals (“foo”) and literals of type string
(“foo” " "xsd:string):

The value space and lexical-to-value mapping of the XSD data type
xsd:string sanctions the identification of typed literals with plain
literals without language tags for all character strings which are in
the lexical space of the data type, since both of them denote the
Unicode character string which is displayed in the literal [11].

The D-entailment regime also states that if two lexical forms map
to the same value and have the same data type, then they entail each
other [11]. For example, “14”" "xsd:decimal and “14.0”" "xsd:decimal are
lexicographically different; however, because 14 and 14.0 map to the same
value, these two literals are equivalent under this entailment rule.

Within SPARQL Filter clauses, additional type promotion rules apply,
since the functions and operators are defined by the XML Query Language
(XQuery) Operator Mapping. XQuery performs type promotion and sub-
type substitution as necessary in order to compare the values of operands
separately from the data types [4]. The outcome (as seen in Section 3.3)
is potentially different results for the following two SPARQL queries:

PREFIX xsd: <http://www.w3.org/2001/XMLSchemat>
SELECT 7x WHERE {
?x 7y "47"""xsd:decimal .

}

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
SELECT 7x WHERE {

77X ?y 7z .

FILTER(7z = "47"~"xsd:decimal)

There is considerable opportunity for confusion here: We found that
even Raytheon BBN’s most experienced Semantic Web practitioners were
surprised to learn that these queries are not equivalent.

SSWS 2011

Implementations of the recommendations are not required to support
D-Entailment on XSD data types, but it is helpful. D-Entailment helps
to reduce the unintended effects of syntactic choices made by authors,
and makes data more interoperable. For instance, authors may choose to
represent 12 as a decimal instead of an integer. However, when another
user queries for “12”" “xsd:integer they would expect to find a match. Of
the triple stores that we studied, Jena most strictly followed the RDF
D-Entailment regime on XSD data types. AllegroGraph chose to only
follow the string entailment rules, equating “foo” with “foo”” “xsd:string,
but not allowing equivalence between different numeric types. Parliament,
AllegroGraph, and Jena TDB follow strict literal equality. All of the triple
stores we tested follow the SPARQL filter clause type promotion rules.

3 Existing Practice

An analysis of literal data types in relation to triple stores is important
because most triple stores lack documentation on their storage and treat-
ment of literals. Some users may expect triple stores to treat various literal
forms (for example “foo”” “xsd:string versus “foo” or “3.14”" “xsd:decimal
versus “3.147" “xsd:float) as equivalent values. However, triple stores vary
in their implementation. To analyze the relationship between literals and
triple stores, we stored various literal representations in several different
triple stores, and then queried for them to see what combinations of lit-
erals each triple store would match.

3.1 Methodology

In order to assess how triple stores handle a diverse set of literals, we
created a test harness to drive each of several triple stores through a series
of tests and compile the results. The particular triple stores we selected
for testing are discussed in Section 3.2, and the results of our testing are
discussed in Section 3.3. The harness stores a set of literal statements in
a triple store and then runs a series of queries to assess which pairs of
literal forms that triple store can match. Our test harness code and a
spreadsheet containing our results can be found on our web site, here:

http://asio.bbn.com/2011/10/ssws/LiteralDataTypes.zip

To begin, the test harness reads RDF from an input file that contains
a consistent selection of typed, untyped, and irregular literals. (By “irregu-
lar”, we mean typed literals whose lexical form are inconsistent with their

SSWS 2011

type, such as “foo” " “xsd:integer. Such literals are interesting because they
are valid RDF, even though most people would regard them as an error.)
The input file containing these literals was in Turtle format when possible,
but we used N-Triples for triple stores that do not support Turtle.

Based upon a W3C compilation of XSD data types and their mappings
and relevance to the standards RDF, OWL, SPARQL, and RIF [23], we
chose a sampling of XSD data types to test. The literals we tested fell into
these categories:

— Strings: both plain and typed

— Numbers: decimal, integer, long, int, double, and float

— Dates and times: dateTime, date, time, and gYear

— Miscellaneous: anyURI, hexBinary, base64Binary, and boolean

— Irregular: Literals whose lexical form is not within the lexical space of
their data type, such as “foo”” "xsd:integer

The test harness adds one literal from the input file at a time to the
triple store under test, and then a preselected set of simple queries and
filter queries are run against the literal. By simple query, we mean a query
whose where clause consists of a single triple pattern whose object is the
literal being tested. In contrast, a filter query is a query whose where
clause consists of a single triple pattern with a variable in the object
position, along with a filter that restricts that variable to be equal to
the literal under test. Examples of simple and filter queries (specifically
querying “47”" "xsd:decimal) can be seen in Section 2. After the queries
are run on the current literal statement, the triple store is cleared and
the process is repeated until all the literal statements in the input file
have been tested. For each query, if its result set is non-empty, then the
spreadsheet cataloging the results indicates this with a “Yes,” while “No”
indicates an empty result set.

3.2 Software Tested

We tested the literal handling behavior of five triple stores: Jena’s in-
memory store, Jena TDB, Parliament, AllegroGraph, and OWLIM.

Jena In-Memory: Jena is an open source Java framework for building
Semantic Web applications [13]. It can read and write RDF in many file
formats, and it also includes a SPARQL query processor called ARQ. Its
highly layered and pluggable architecture makes it an ideal front end for
other triple stores as well — Mulgara, Virtuoso, OWLIM, AllegroGraph,
and Parliament can all use Jena in this fashion. When used on its own,

SSWS 2011

it provides an easy-to-use and well documented in-memory triple store.
Jena’s in-memory store accepts irregular literals.

Jena TDB: TDB is an optional subsystem of Jena for persisting RDF and
OWL data that allows for high performance and large scale storage and
query [13].

Parliament: Parliament is an open source, high performance, and stan-
dard compliant triple store for the Semantic Web, written by Raytheon
BBN Technologies [1]. It pairs Jena’s query processor with an innova-
tive back-end store, and customizes Jena’s query processor to optimize
queries so as to derive maximum benefit from the back-end’s data orga-
nization. For this paper in order to meaningfully derive how each triple
store uniquely handles literals, the Jena API/interface was not used in
conjunction with any other triple store other than itself, Jena TDB and
Parliament. The test harness loaded Parliament from a Turtle file.

AllegroGraph: AllegroGraph is a high performance database and applica-
tion framework for the Semantic Web from Franz [8]. It supports various
clients (Python, Java, Jena, Lisp, Ruby, etc.) and has well documented ex-
amples and tutorials for implementation. AllegroGraph can read and write
RDF in RDF/XML and N-Triples file formats but not Turtle. For this
reason we were unable to add unquoted literals to AllegroGraph. Allegro-
Graph also will not accept irregular data types such as “foo”” "xsd:integer.
Consequently, there are some blank cells in the AllegroGraph column of
the test results.

OWLIM: OWLIM is a triple store from Ontotext [16]. Just as Parliament
uses Jena as a front end and query processor, OWLIM uses another pop-
ular Java framework for Semantic Web applications called Sesame [18].
There are several versions of OWLIM available with varying levels of scal-
ability and price points. OWLIM-Lite was used in this study in conjunc-
tion with the Sesame library and the SPARQL query language. It supports
many file formats, including Turtle, used here. OWLIM cannot accept ir-
regular literals such as “foo”” "xsd:integer.

Other Triple Stores: We chose the triple stores above because of their
popularity, free availability, and relevance to our work here at BBN. We
also tried to achieve a diversity of query processors, while still empha-
sizing Jena because it is used in our own triple store, Parliament. There
are several other well-known triple stores that we would like to test, but

SSWS 2011

did not due to time constraints. These include (but are not limited to)
Virtuoso, Mulgara, and Oracle.

3.3 Analysis of Results

This section gives an overview of the results of our testing. Our complete
results can be found on our web site, here:

http://asio.bbn.com/2011/10/ssws/LiteralDataTypes.zip

Keep in mind that Jena and Parliament accept all literals. Allegro-
Graph does not support Turtle syntax, and therefore does not accept
unquoted literals (47, true). Also, OWLIM and AllegroGraph do not ac-
cept irregular literals (e.g., “foo”" "xsd:integer). The empty blanks in the
spreadsheet are indicative of these limitations.

Most of the literal types chosen are siblings in the inheritance hier-
archy, but the types decimal, integer, long, and int form an inheritance
chain. The following sections will explain how each category of literals
(numbers, strings, times, miscellaneous, and irregular) was handled by
the various triple stores.

Numeric Types: With the numeric types (float, double, decimal, and all
the types derived from decimal), the following kinds of numeric compar-
isons are of particular interest:

1. Literals that match exactly, according to the strict rules of RDF with-
out entailment

2. Literals with identical lexical forms but differing types that share a
common primitive base data type, e.g., decimal and integer

3. Literals with identical lexical forms but differing types that do not
share a common primitive base data type (most often, this means
sibling types), and yet whose types are intuitively compatible, e.g.,
float and integer

4. Literals with identical types but differing lexical forms that map to the
same point in value space, e.g., “47”" "xsd:long versus “+47”" "xsd:long

Table 1 summarizes the results for numeric literals in terms of these cat-
egories. (The numbers in the table correspond to the categories of com-
parisons in the list above.)

Strings: The key question with strings is which triple stores see plain
literals (“foo”) and typed strings (“foo”” "xsd:string) as equivalent. Table 2
summarizes how strings are handled by the various triple stores.

SSWS 2011

. Query |Matched Unmatched
Triple Store Type Relationships |Relationships
Jena in-memory Simple |1, 2, 4 3
Jena TDB, AllegroGraph, .

Parliament, OWLIM Simple |1 2,3, 4
Jena in-memory, Jena TDB, .
AllegroGraph, Parliament, OWLIM Filter 1,2,3,4

Table 1. Comparison Results for Numeric Literals

Triple Store Query Type |Typed String versus Plain Literal
Niegtocants o sty Mot

%ii;ii OWLIM |Simple No Match

%Z?i;fifé, owrim |Filter Match

Table 2. Comparison Results for Strings

Temporal Types: The temporal XSD types (dateTime, date, time, and
gYear) are treated by all the triple stores in the same manner. For all
triple stores, and in both simple and filter queries, only exact matches are
found.

anyURI: XSD type anyURI acts much like the temporal data types in
that only exact matches result in a positive comparison, except in one case:
Jena’s in-memory store finds matches between anyURI literals and strings
(either typed or plain) in simple queries only. Within a filter, anyURI
literals and strings do not match in any triple store.

hexBinary and base64Binary: Across the board, the XSD types hexBinary
and base64Binary compare equal only in the case of exact matches. Inter-
estingly, a hexBinary literal will not compare equal to the base64Binary
literal that represents the same octet sequence. For example, 1111 in hex
converts to ERE= in base64, but “1111”" "xsd:hexBinary does not match
“Fre="""xsd:base64Binary in any triple store. This is due to the fact that
hexBinary and base64Binary are sibling data types and do not derive from
a common primitive base data type.

Boolean: All triple stores match unquoted booleans (true) and typed
booleans (“true”” "xsd:boolean) in both simple and filter queries (except
AllegroGraph as it does not accept unquoted literals). This is not a sur-
prise, because unquoted booleans are simply a syntactic shortcut for typed

SSWS 2011

booleans in Turtle. A more interesting result is that no triple store matches
unquoted or typed booleans against typed or plain string literals with the
same lexical form (e.g., “true”” "xsd:string and “true”).

Irreqular Literals: OWLIM and AllegroGraph do not recognize and will
not accept irregular data types such as “foo”"“xsd:integer. With other
triple stores, such literals compare equal in the case of exact matches.
The more interesting result is what happens when comparing an irregular
literal against a string (either typed or plain) with the same lexical form.
Table 3 shows what happens in this case.

Triple Store Query Type i{g;jl;): ;Lz;l;lStrlng versus

Jena in-memory Simple Match

Jena in-memory Filter No Match

Jena TDB, Parliament |Both No Match

AllegroGraph, OWLIM |Both N/A — unable to store irregular literals

Table 3. Comparison Results for Irregular Literals

Overall in our tests, Jena’s in-memory store stood out as the most
accepting of types that displayed a conceptual similarity (e.g., “foo” ver-
sus “foo”” "xsd:string or “47”" “xsd:decimal versus “47”""xsd:integer) for
both simple queries and filter queries. The Parliament triple store is most
consistent with the way in which AllegroGraph and OWLIM treat literals
in that these three triple stores are less permissive for most conceptually
similar data types.

4 Related Work

Most of the related work in this domain is in the language specifications
themselves [14] [24] [11] [20]. Because these specifications can be com-
plex, the W3C produced a Working Group note, “XML Schema Datatypes
in RDF and OWL” [6], which clarifies typed literal equality via the D-
entailment regime.

Other work emphasizes the importance of using D-entailment in deal-
ing with inconsistencies of instances [19] and specifics of the entailment
regimes [12]. Many triple store studies have also been completed; however,
they have mostly focused on performance [21] [22]. Although not directly
targeted at RDF data types, Garcia-Castro and Gomez-Perez explored

10

SSWS 2011

the interoperability of semantic web technologies using OWL. They cre-
ated an interoperability benchmark to evaluate tools and they concluded
that interoperability between Semantic Web tools is very low [9].

5 Conclusions

The treatment of typed literals by triple stores is fairly consistent, with
the exception of Jena’s in-memory store. These triple stores differ in their
treatment of conceptually similar types for a simple query. Jena TDB,
Parliament, OWLIM, and AllegroGraph implement strict literal equality.
The Jena developers, on the other hand, stated “the formal semantics
of both RDF and OWL makes it clear that entailment is a core feature
of the Semantic Web recommendation” [5]. Consequently, the Jena in-
memory model uses the D-Entailment regime to equate literals with de-
rived types [10]. Jena also implements the D-entailment rule which equates
literals with identical types and values but different lexical forms. Addi-
tionally, both Jena’s in-memory store and AllegroGraph equate typed
and untyped strings in simple queries. It is surprising that the Allegro-
Graph developers decided to implement D-Entailment for strings, but not
for numeric types. Jena’s in-memory store is also more permissive with
the XSD data type anyURI, when matched against string type in simple
queries. Interestingly, Jena’s in-memory store matches irregular literals
with strings with the same lexical form. This seems to deviate from the
D-entailment rules. All triple stores followed the same conventions for
temporal, hexBinary, base64Binary and boolean types. Overall, Jena fol-
lows D-Entailment, allowing more flexibility in user input, while the other
triple stores tend to follow strict literal equality.

It is also crucial to add that in contrast to simple queries, filter queries
recognize sibling and derived type relationships in query results for most
triple stores. This indicates that filter queries have a more permissive path
in parsing derived and sibling types. As defined by SPARQL [20], filter
queries use the XML Query language (XQuery) type promotion [4]. This
results in differences in query responses between apparently equivalent
filter queries and simple queries.

There are several possibilities for expanding on this research in the
future. The most obvious is to expand the testing to include more triple
stores (such as Virtuoso, Mulgara, and Oracle) as well as SPARQL front
ends to relational databases (such as D2RQ, Revelytix’ Spyder, and BBN’s
Asio). Another possibility is to profile the use of typed literals in various
subsets of the Semantic Web community to better understand how aspects

11

SSWS 2011

of the type system affect real users. Some work has been done in this regard
based on the billion triples challenge corpus from ISWC 2008 [7], but a
more in-depth look at current data is warranted.

Finally, it would be interesting to better understand how the disparity
between literal matching in simple queries and filter queries affects query
optimizers. For instance, a filter that compares a variable for equality to
a known URI can usually be optimized away by directly substituting the
URI in place of the variable throughout the rest of the query. However, we
have shown that a filter testing for equality to a literal cannot be so easily
optimized away. This may impact how developers write their queries and
improve overall performance time.

As evidenced by semantic tools research [9] and our studies, semantic
technologies lack interoperability due to conflicting standards and devel-
oper design decisions. In order for the semantic web scalability to become
a reality, interoperability is essential. The design decisions made by devel-
opers not only effect the results users receive via queries, but the perfor-
mance of their system. OWLIM specifically states in their documentation
that they do not use the D-entailment regime because the performance
penalty is too high [17]. In further studies we would like to use larger data
sets to investigate how the triple stores implementation of RDF data type
equality effects their scalability. This data will help users decide which
triple store to select based on performance and treatment of RDF literals.

Differing standards in the treatment of typed literals pose issues for
users who expect conceptually similar types to match in their queries. Also
the triple stores we studied differed greatly in their RDF implementation,
yet their design decisions were undocumented. The different implemen-
tations lead to varying results, and it is pertinent that users know what
they are using. As the semantic web becomes an increasingly popular
framework for users, syntactic differences in typed literals are inevitable.
It is critical that the community be aware of the inherent differences in
the treatment of typed literals in order to promote correctness and main-
tainability of implementations, uniformity of practice, and simplicity of
standards.

References

1. BBN Technologies: Parliament, http://parliament.semwebcentral.org/

2. Beckett, D., Berners-Lee, T.: Turtle — Terse RDF Triple Language, http://www.
w3.org/TeamSubmission/turtle/

3. Biron, P.V., Malhotra, A. (eds.): XML Schema Part 2: Datatypes Second Edition.
W3C (October 2004), http://www.w3.org/TR/xmlschema-2/

12

10.

11.

12.

13.
14.

15.

16.

17.

18.
19.

20.

21.

22.

23.

24.

SSWS 2011

Boag, S., Chamberlin, D., Ferndndez, M.F.; Florescu, D., Robie, J., Siméon, J.
(eds.): XQuery 1.0: An XML Query Language (Second Edition). W3C (December
2010), http://www.w3.org/TR/xquery/

Carroll, J.J., Dickinson, I., Dollin, C.: Jena: Implementing the Semantic Web
Recommendations. Tech. rep., HP Laboratories Bristol (December 2003), http:
//www.hpl.hp.com/techreports/2003/HPL-2003-146.pdf

Carroll, J.J., Pan, J.Z. (eds.): XML Schema Datatypes in RDF and OWL. W3C
(March 2006), http://www.w3.org/TR/swbp-xsch-datatypes/

Dean, M.: Toward a Science of Knowledge Base Performance Analysis. In: In-
vited Talk, 4th International Workshop on Scalable Semantic Web Knowledge
Base Systems (SSWS2008). p. 20. Karlsruhe, Germany (October 2008), http:
//asio.bbn.com/2008/10/iswc2008/mdean-ssws-2008-10-27.ppt

Franz, Inc.: AllegroGraph, http://www.franz.com/products/allegrograph/
Garcia-Castro, R., Perez, A.G.: Interoperability results for Semantic Web technolo-
gies using OWL as the interchange language. Journal of Web Semantics: Science,
Services and Agents in the World Wide Web November, 278-291 (2010)

Glimm, B., Ogbuji, C. (eds.): SPARQL 1.1 Entailment Regimes. W3C (May 2011),
http://www.w3.org/TR/sparqlll-entailment/\#DEntRegime

Hayes, P. (ed.): RDF Semantics. W3C (February 2004), http://www.w3.org/TR/
2004 /REC-rdf-mt-20040210

ter Horst, H.J.: Completeness, decidability and complexity of entailment for RDF
Schema and a semantic extension involving the OWL vocabulary. Web Semantics:
Science, Services and Agents on the World Wide Web 3, 79-115 (2005), http:
//www.websemanticsjournal.org/index.php/ps/article/download/66/64

HP Labs Semantic Web Research: Jena, http://www.hpl.hp.com/semweb/
Klyne, G., Carroll, J. (eds.): Resource Description Framework: Concepts
and Abstract Syntax. W3C (February 2004), http://www.w3.org/TR/2004/
REC-rdf-concepts-20040210/

Motik, B., Patel-Schneider, P.F., Parsia, B. (eds.): OWL 2 Web Ontology Lan-
guage: Structural Specification and Functional-Style Syntax. W3C (October 2009),
http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/

Ontotext: OWLIM, http://www.ontotext.com/owlim/

Ontotext: Primer Introduction to OWLIM, http://owlim.ontotext.com/
display/OWLIMv41/Primer+Introduction+to+0WLIM

OpenRDF: Sesame, http://openrdf.org

Polleres, A., Hogan, A., Harth, A., Decker, S.: Can we ever catch up with the web.
Semantic Web Journal 1, 45-52 (2010)

Prud’hommeaux, E., Seaborne, A. (eds.): SPARQL Query Language for RDF.
W3C (January 2008), http://www.w3.org/TR/rdf-sparql-query/

Revelytix, Inc.: Triple store evaluation analysis report. Tech. rep., Reve-
lytix, Inc. (September 2010), http://www.revelytix.com/sites/default/files/
TripleStoreEvaluationAnalysisResults.pdf

Rohloff, K., Dean, M., Emmons, 1., Ryder, D., Sumner, J.: An evaluation of triple-
store technologies for large data stores. In: On the Move to Meaningful Internet
Systems 2007: OTM 2007 Workshops. pp. 1105-1114. Springer, Vilamoura, Por-
tugal (2007), LNCS 4806

W3C: XSD Datatypes (June 2011), http://wuw.w3.org/2011/rdf -wg/wiki/XSD_
Datatypes

W3C OWL Working Group (ed.): OWL 2 Web Ontology Language Document
Overview. W3C (October 2009), http://www.w3.org/TR/owl2-overview/

13

