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Abstract. Context awareness enables services and applicationsybthda be-
haviour to the current situation for the benefit of their gsdfris considered as
a key technology within the IT industry, for its potentialgmvide a significant
competitive advantage to services providers and to giveastibl differentiation
among existing services.

Automated learning of contexts will improve the efficiendy@ontext Aware
Services (CAS) development. In this paper we present amystdch supports
storing, analyzing and exploiting an history of sensors equipments data col-
lected over time, using data mining techniques and toolss. dppproach allows us
to identify parameters (context dimensions), that arevegleto adapt a service,
to identify contexts that needs to be distinguished, andlyitaidentify adapta-
tion models for CAS such as the one which would automaticadligch off/on of
lights when needed.

In this paper, we introduce our approach and describe tHatecture of our
system which implements this approach. We then presentsethdts obtained
when applied on a simple but realistic scenario of a persorimgaround in her
flat. For instance the corresponding dataset has been madyaevices such as
white goods equipment, lights and mobile terminal basedasnwvhich we can
retrieve the location, position and posture of its ownenfro

The method is able to detect recurring patterns. For instaalt patterns found
were relevant for automating the control (switching or)/af the light in the
room the person is located. We discuss further these repaisition our work
with respect to work done elsewhere and conclude with somsppetives.

1 Introduction

Context awareness is considered as a key technology witleilTt industry, for its
potential to provide a significant competitive advantageedovices providers and to
give subtantial differentiation among existing serviokscording to a Gartner Inc. re-
port [1], "Context-aware computing today stands wheredeangines and the web did
in 1990".

In parallel to this, the interest of the scientific commuiiityhe context aware com-
puting domain has gained a lot of momentum, due to the fattttia the advent of the
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Internet of Thing (IoT) era, terabytes of data are bound tproeluced daily by sensors
and equipments.

Such data, when correctly interpreted can enrich the degmmi of the context,
which in turn makes it possible for services and applicatiinget context-aware, and
finally to improve their efficiency in terms of personalizatj and simplicity of use.

However, identifying and describing/defining relevantieoas is cumbersome. One
reason is that it is generally the case that multiple costhatze to be identified and
distinguished. Another is that contexts span over multifdenains such as the “user
context”, the “system context” or the “environmental cotiteto mention only a few.

Thus, the automated learning of contexts is a way to improeefficiency of Con-
text Aware Services (CAS) development.

Our approach consists of storing, analyzing and exploitinchistory of sensors
and equipments data collected over time. In a previous walave used a seman-
tic modeling language for describing context informati@hdnd have proved that se-
mantic modeling makes it possible to describe heterogendormation in a single
framework. More generally, interoperability among sesseensors networks, and sen-
sor based applications has been promoted by initiativels aadhe Semantic Sensor
Network incubation group (SSN) [3]. In the work reporteddaereve sticked to that
semantic modeling policy. As explained throughout thisgraghis will allow us to:

— ldentify parameters (context dimensions), that are releteaadapt a service, such
as the control of lights or white goods equipment. For exantple user activity is
such a parameter and the next item gives an example on hopattameter is used
to define contexts.

— ldentify contexts that needs to be distinguished. For exanifd need more light
when | read than when | watch the television, the context “Iraading” should
definetely be distinguished from the context “I am watching television”. Both
contexts refer to my activity and going back to the previees the activity should
be identified as a parameter that is relevant to our concern.

— ldentify adaptation models for CAS such as the one which dauitomatically
switching off/on of lights when needed

In the next section we introduce a simple scenario, whichilkiktrate a standard
use case that our system supports. The details of the scem#irbe used throughout
the paper to provide concrete examples of the conceptsviedoh our approach. We
then present our approach and describe the architecturarafystem which imple-
ments it. The system has then been assessed on severatslatéespresent the results
obtained when applied on the illustrative scenario dat&$eslly, we discuss these re-
sults and position our work with respect to work done elsewland conclude with
some perspectives.

2 Jane ordinary day life Scenario
The scenario takes place in a simple flat and stages Jane;ea8®id lady who spends

the first two hours of the day moving back and forth betweenbgeiroom and her
kitchen. The map of the flat is depicted in figure 5-(a). Morecisely, at the beginning
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of the scenario, Jane is sleeping in her bed, then she wakegoap to the kitchen,
eventually she uses her oven to bake or reheat some foodt eat$ then returns to
her bedroom to take a short nap. Then she walks back to tHeekitio drink a glass of
water and returns again in her bed to resume her short rest.

The flat is equiped with a sensor which keeps track of the swftthe oven, i.e. if
the oven is on or off, and with lights which emit signals whesrethey are turned on
and turned off. These devices and sensors are also pictuirefigure 5-(a). Jane keeps
her mobile phone with her. The mobile phone embeds a softwhieh is able to detect
Jane’s location, i.e. whether she is in her bedroom or in ftehén. It also embeds
a software which is able to detect Jane’s posture, i.e. venethe is lying, standing,
seating or walking.

Now by observing Jane’s behaviour over a long period of tisas, over a week,
a human would probably notice that most of the time, if notrgtime, when Jane
wakes up and gets out of her bed she switches the light on haadntost of the time
when Jane leaves her bedroom she switches the light off. @um ¢s that we could
achieve a similar analysis by applying data mining techeggon a corpus of sensors
data, correlated with Jane behaviour, and collected oessdime period of time.

Actually, we believe that modeling the sensors data usingpgmopriate represen-
tation language, storing them over time in a database angzamgthe content of this
database using datamining techniques, will make it passibdliscover contexts which
might be relevant for adapting services in such a way thatwwuld be personalized
to Jane.

We elaborate this and introduce our approach in the follgwection.

3 Approach and architecture

The notion of Context is itself contextual as each applecgteach user, each activity
has its own definition of context. For this reason there’s aimfpconsidering a mono-
lithic or centralized context management system. This lesith opt for a context man-
agement infrastructure that each party could use to settipr@mage its own context,
rather than for a central context management system, whigliditely would mean
that some universal contexts exists that would suit to atigm

Moreover, the architecture as well as the information meteuld be flexible. More
precisely, the modeling language should be able to copethtlneterogeneity of data
sources as well as with the variety of nature of data prodibgetthese data sources.
For all these reasons we have based our approach on the Armaigext Management
Service (CMS)[4]. We recall here the main concepts of tlaafework. For more details
the reader could refer to [4].

Each sensor or data source is encapsulated within a softwamgonent that we call
a context source (CS). An example of this is depicted in therdid where a mobile
phone using Wifi based location feeds a software componé#aticéocation CS”.

The connection between real sensors and its CS componeapéndent on the
sensor connectivity. In principle, all options can be supgmh among which, the most
popular ones are the serial line, PLC, Zigbee, ethernegtbhih connectivities. The
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Fig. 1. Wrapping a sensor as a Context Source

point is that once this connection has been set, any acc#ss $ensor is done through
the CS component, as far as context management is concerned.

The job of “location CS” is to set semantic annotations tagbé of the sensor raw
data, so that it can be automatically interpreted withindbietext management process
later on. Figure 2 displays the result of such annotation.

ontology Entity ontology:LocationData

ontology Person

ontologyisContextOf ontolomyhagSource
¥

ontologies:Tane ontology:Sensor_2 ontology Kitchenl

Fig. 2. Location context RDF model

For instance, “Kitchen1”, which is the location value pieil by the mobile ter-
minal, has been interpreted as a “Place”, which is a cladsarcontext ontology. The
annotation has been made explicit by linking the “Kitcheaofject to the “Place” class
using a “io” (“instance of”) relation. The result of this melthg process is presented in
figure 2.

Once each sensor data has been modeled, aligning and atjgyethem into a
integrated and consistent model is straightforward, beedliey have been expressed
along a common ontology. This consistent model is calledumton and is described
in the next paragraph 3.1. The aggregation process is fbgl¢he ContextStorage
CC component. This component is introduced later on in papg3.3.
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3.1 Situation

As told previously, situations are built by aggregatingtesh data. Situations model
the states of the environment. A situation could be consiiexss a snapshot of the
environment at a given point in time, which is made of whatévirmation about this
environment we could collect from the sensors.

The algorithm we use for computing situations is inspiredfrfithe situation calcu-
lus introduced by McCarthy in 1963 [5]. The situation caleuls a logical formalism
which makes it possible to reason over dynamical envirorigyand provide a solution
to the question “what beliefs still holds in response toaw!' [6]. With respect to our
problem, a sensor event creates a transition from the dwsiteation to the new situa-
tion, whenever the information it conveys is inconsisteitihthe current situation (e.g.
the event reports that a light is on, while it is describedfasahe current situation).
In this case, a new situation is created which updates themtgituation by adding the
new information and removing the inconsistent part.

This process is carried out by the ContextStorage CS conmposethat situations
can be stored persistently once they have been created.

3.2 Similarity and clustering algorithms

The next goal of the LearningComponent CC is to proceed wilassification of the
situations which have been stored over time as explaindukiptevious section. This
classification process involves a similarity function ardustering algorithm.

A similarity function allows to measure the similarity beten two situations. It
helps to differentiate two situations which are quite d#fet or to assess the similar-
ity of two situations which are close to each other. This fiorcis a cornerstone of
the classification process. As the items we would like to meathe similarity of are
graphs, we have used two discrimination criteria:

1. concepts (nodes) that appear in the graph and how oftgragpear
2. relations between concepts of the graph

The first criteria is evaluated using the TF-IDF (for Termdtrency-Inverse Document
Frequency) method [7]. This method has been originallyuhticed for text data min-
ing, but we have adapted it to our problem by drawing a pdra#¢ween texts and
situation graphs.

For the second criteria we have used Rada et al. [8] simjilar#asurement dedi-
cated to semantic networks. This measurement is based-anHigrarchical relations.
Thus, in order to evaluate the similarity between two coteé@pa model the shortest
path between the two concepts in the “is-a” lattice is cora@uthis measure is applied
node per node when comparing two graphs then results arel agcknd normalized.

Once normalized, these two measurements have been comisiveyia simple
weighted sum.

Clustering aims at partitioning situations into groupsitfations which are similar
to each other. These groups are called clusters. If sevtratiens occurring over time
are very similar to each other, they will be grouped in theesataster.
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Thus large clusters will suggest recurring patterns amduogt®ns (contexts). In
order to produce such clusters we have used the Markov @lugt@lgorithm (MCL).
MCL [9] builds a NxN distance matrix where N is the number afrabnts (situations)
and each matrix cell contains the distance between the ecoklement and the line
element. The algorithm then proceeds by simulating randatksawithin the distance
matrix, by alternation of expansion and inflation stagegqdfsion corresponds to com-
puting random walks of higher length (with many steps). lidla has the effect of
boosting the probabilities of intra-cluster walks and wi#imote inter-cluster walks.

Iterating expansion and inflation results in the separaifahe graph into different
segments that we call clusters in our terminology. As mewtitpreviously in section 2,
we expect clusters to correspond to relevant contexts. Eatext would then be an
abstraction of all the situations contained in its cluster.

3.3 architecture

The concepts introduced previously have been implememddraegrated within a
prototype, which architecture is depicted in figure 3.

Location |, |,
B
cs ContextStorage
Ccs
| Posture
. 7 Audiok
"y Position | | q
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= Electrical LearningComponent -v
oL cs [T e =
Lo \wl
GW
ContextManager . Natification |_| |
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Fig. 3. Context Learning System Architecture

We simply recall and summarize the function of each compbinethe following:

Sensor Context Source: Provides a high level interface to sensors. A context sourc
component can be viewed as a wrapper of the physical sensor.

Context Manager Context Source: This component subscribe to the different sensor
context sources available. It integrates heterogenealidiaparate data conveyed
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by the Sensor Context Source events in order to build andteiaia consistent
model of the world. Such a model is called a situation. In ipres paragraph 3.1,
we explained how situations are built from sensor data svent

Notification Context Consumer : Analyses the world model, identifies critical situa-
tions, plans and triggers appropriate actions

Audio and video service : Render visual and audio information

Context Storage Context Source: Collects sensor data formats them into the context
data description and stores them persistently. For moedislétie reader could refer
to [10].

Learning Component Context Consumer ;: Analyses the situations stored over time,
discovers and extracts recurring situations (contexts)

Context Data Storing : Collects sensor data formats into the context data desmmip
and stores them persistently for retrieval and postmortearoffline analysis.

After this short introduction of our approach and the desin of our context
learning prototype, we present the results obtained whplyiag our prototype to the
data generated by the illustrative scenario exposed ifose2t

4 Experimental results

Enacting the scenario introduced in section 2 yields 31@eateta events. These events
are presented in figure 4. Each column of the table represeaitia of a sensor mea-
surement. Column values are grouped per sensor. For exanepfiest column repre-
sents the switching on of the oven whereas the second oneseayis its switching off.
Each line of the table corresponds to an event a sensor étaést lines are added in a
chronological order, the first event (corresponding to folaas been switched off”) is
positioned as the first line of the table. For example, eventlver 14 is posted by the
kitchen light, which reports the switching off of the light.

Events have been also plotted on the map, at the positionhiheshen they oc-
cured. For example in figure 5-(b), we have plotted the events13 events as circle
shaped tags annotated with the number of the event. Fontestavent 12 has been
posted by the oven while it was switched on, whereas evenbif@gponding to its
switching off.

Theses events have produced 27 situations, as resulting tire algorithm de-
scribed in paragraph 3.1. Similarly to what we have donelferdvents, each situation
has been plotted on the flat map between the couple of everttetipectively initiated
and terminated the situation. The 27 situations are theresepted in figure 5-(c) as
square shaped tags.

Although we model situations as RDF graphs, as explaineddtian 3.1, it is also
convenient to represent them more concisely in terms ofosemaeasures as shown
in table 6. This representation will be more suitable forleating the results of the
algorithms as we’ll address this point in section 5.

The context learning component has identified 8 situatitunsters, using the com-
bined TF-IDF and Rada et al. similarity measure and the MCistelring algorithm as
explained in paragraph 3.2. These clusters and the sitigti@y contain are presented
in table 7.
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Fig. 4. Sensor events

For instance, cluster O contains the 4 situations 2, 12, 46lf2ve check at their
synthetic representation from table 7, we can notice treat #ine identical as shown in
figure 8. Figure 8-(a) highlights the locations of Jane dytime four situations 2, 12,
16, 24, while figure 8-(b) is an excerpt of table 7 correspogdd those situations.

We can notice that this cluster can be informally descrilsetihe person is seating
on his/her bed, while the light is on”.

With a similar analysis for all the clusters found we come with the following
interpretation:

Cluster 0 : "The person is seating on his/her bed, while the light is on”
Cluster 1 : " The person is standing in her/his bedroom, while the ligtgn ”
Cluster 2 : " The person is standing in her/his bedroom, while the lighdff ”
Cluster 3 : " The person is standing in the kitchen, while the light i§"of
Cluster 4 : " The person is standing in the kitchen, while the light is’on
Cluster 5 :” The person is in his/her bed, while the light is off

Cluster 6 : " The person is lying on his/her bed, while the light is on”
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Fig. 5. Environment, sensor events and situations

Cluster 7 :” The person is seating on his/her bed, while the light i§ off

Now that we've exposed the results obtained using our agpraee would like to
discuss them and position our work with respect to work ddsevenere in the next
section.

5 Discussion

Before evaluating our experimental results, we would likeniake a general comment
on the relevancy of using sensors for observing and anajymople behavioursin their
ordinary daily life.

When installing our 5 sensors (oven, kitchen light, bedrdigitt, location sensor,
posture sensor) in Jane’s two rooms flat, as each of thesersgm@duces measure-
ments within ranges of size 2 ('on’/’off’ for the three firgrssors, 'kitchen’/’bedroom’
for the location sensor) and 4 ('running’/’standing’/'sieg’/'lying’ for the posture sen-
sor) we could expect situations to span over more than 2 x 2 2 4 = 64 variants or
potential combinations. However, although the scenanegages 27 situations, as seen
on table 6, only few of them happen. We believe that this corsfithe value of sensors,
be they simple and sparsely deployed as in our experimemtabament, for monitor-
ing people behaviour. For instance, if we were to observenaetration of situations
which description fall outside those which usually hapgenexample with the person
lying while she/he is in the kitchen, we could consider it ashint that something is
going wrong.

Now back to our context learning research work, we can a#isatrtour approach
is able to identify clusters of similar situations which acérequently. Although we
haven't pushed the implementation of our approach thatéarwe could notice that
some of these clusters correspond to contexts that areargléw control the environ-
ment. For instance, cluster 1 and cluster 2 correspond todhtext where the person
is leaving her/his bedroom, and that their description ssgthe bedroom light to be
switched off (this is the only difference between the sytithéescription of the two
clusters).

Some work has addressed the extensive use of sensors nmeastgéor learning
human behaviour ([11]) but they have been limited in scopthéoinference of user
context (user activity/user task) from physical contefbimation.
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Fig. 6. Situations found

We think that these limitations principally stems from thede of the "attribute/value’
representation paradigm for representing context datab®lieve that relations and
structural information matter in context aware computiRgr example, in a context
aware building access control system, it makes sense to #mmWind of relationship
between the visitor and the people present in the buildind,ithere are several vis-
itors it make sense to know the relationship between thosigoxs and to take this
information into account when making a decision on whicheas@olicy to adopt.

In our approach we have used RDF which makes relational andtstal infor-
mation explicit, to model the instances of the populatioe’w learned reccurent con-
text from. There are some existing learning techniques kvhire dedicated to struc-
tured data such as structural learning, multi-table legyrinductive logic programming
(ILP).

Within a preliminary stage of our work we have evaluated amwehgared various
clustering algorithms including the Kmean algorithm, tier&rchical classification and
MCL. These methods are unsupervised classifiers, whickdlsmeans that no oracle
is required to declare which class a sample belongs to. Krakgomithm places each
element of the population iteratively in one of K distincagtes which minimizes the
its distance to the class. Each class is represented byatypet(or centroid) which is
itself an element that represents the class. This protasyedated at each iteration so
as to ensure a good representation of the class. Thistemicess completes as soon
as an iteration doesn’'t change neither an element to claggnasent, nor a prototype
change in a class. There are two major drawbacks with the Krakgrithm. One is
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Fig. 7. Clusters extracted

that K, the number of classes, has to be fixed arbitrarilypther is that its results are
very sensitive to the choice of the prototype at the boostagtage.

We have evaluated another clustering algorithm calleddtidical agglomerative
clustering [12] that doesn’t present the first drawbacksTdigorithm starts with sin-
gleton clusters where each element forms a cluster. Theitdgothen proceeds by
iteratively merging (agglomerating) pairs of clusterstthee close to each other (in
terms of similarity measure), until all clusters have beesrgad into a single clus-
ter that contains the whole population. The result of thgoethm is a hierarchy of
clusters, which can be represented as a dendogram. Thistlalgshares the second
drawback of the Kmeans algorithm because the number okchidepends on the level
at wich the dendogram is cut.

The MCL algorithm which we finally retained just ignores tescond drawback.
As we've seen, this algorithm had good performance on ourasée dataset.

The system has been assessed on several datasets, sona ofvblged a large
amount of data. These experiments have revealed that sotiméizgtion in the data
management and algorithm is required, if we need to incréies@umber of context
sources, or if we need to store over a longer period of timeseaeral weeks. We now
conclude and outline some perspectives of our work.

6 Conclusion and perspectives

In this paper, we have presented a system for archiving anshgidata collected from
sensors deployed in a home environment. The sensors we badeiruour MIDAS
project include white goods equipment and mobile termirzeeldl sensors. From the
data produced by these sensors we can retrieve the locptisition and posture of
their owners.

However, the flexibility of the data representation languag have adopted makes
it possible to support a large variety of data sources, sached services or personal
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Fig. 8. Position and description of situations in cluster 0

productivity tools (agenda, phonebook,...). From thi©issewe have applied data min-
ing tools for extracting clusters of similar data. We havplegal the system to a simple
but realistic scenario of a person moving around in her flag Method is able to detect
recurring patterns. More over, all patterns found are sgiefor automating the control

of some devices. For instance, among the 8 patterns fourfdhém describe a context
where the light of the room the person is located in, shouldvsiéched off, whereas

the other 4 describe a context where the light should be badton.

Beyond context aware home automation, we believe that qanoagh is applicable
to domains where similarity based clusters should be fourtcbbstructures of het-
erogeneous and disparated data. Hence the following agipiicdomains are potential
targets of our system:

— Customer Relationship Management (Learn customers habits
— Content search and casting (Learn customers preferences)
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— SmartCity, SmartHome, SmartBuilding (Discover hidderrelations)
— Web services (context aware WS)

There are some issues remaining that we are currently amidges hey include
scalability and the possibility to learn service contexaptation. For the second point,
we expect machine learning mechanisms will allow the idieation of correlation
between service configuration parameters and contextigésos.

References

1. Lapkin, A.: Context-aware computing: A looming disrapti Research report, Gartner Inc.
(2009)

2. Ramparany, F., Benazzouz, Y., Chotard, L., Coly, E.: €xraware assistant for the aging
and dependent society. In et al., J.A., ed.: Workshop Pdags of the 7th International
Conference on Intelligence Environments, Nottingham, UKiversity of Trent, IOS Press
(2011) 798-809

3. Lefort, L., Henson, C., Taylor, K., Barnaghi, P., Comptbh, Corcho, O., Garcia-Castro,
R., Graybeal, J., Herzog, A., Janowicz, K., Neuhaus, H.pNik A., Page, K.: Semantic
sensor network xg final report, W3C Incubator Group Repd®@i{2 Available ashtt p:

[ I www. W3. or g/ 2005/ | ncubat or/ ssn/ XGR- ssn/ .

4. Ramparany, F., Poortinga, R., Stikic, M., Schmalersird., Prante, T..: An open Context
Information Management Infrastructure - the IST-Amigo ject In of Engineering, I.1.,
Technology, eds.: Proceedings of the 3rd IET Internati@wiference on Intelligent Envi-
ronments (IE'07), Germany, University of Ulm (2007) 398340

5. McCarthy, J.: Situations, actions and causal laws. TieahReport Memo2, Stanford Arti-
ficial Intelligence Project (1963)

6. McCarthy, J., Hayes, P.: Some philosophical problems fitee standpoint of artificial in-
telligence. In Meltzer, B., Michie, D., eds.: Machine Itigggnce. Volume 4. Edinburgh
University Press (1969) 463-500

7. Salton, G., McGill, M.: Introduction to Modern Informati Retrieval. McGraw-Hill Inter-
national Editions (1983)

8. Rada, R., Mili, H., Bicknell, E., Blettner, M.: Developmteand application of a metric on
semantic nets. IEEE Transactions on Systems, Man and Gytiesh9 (1989) 17-30 ISSN
0018-9472.

9. van Dongen, S.: Graph Clustering by Flow Simulation. Rtesis, University of Utrecht
(2000)

10. Benazzouz, Y., Beaune, P., Ramparany, F., BoissierMoadeling and storage of context
data for service adaptation. In Sheng, Q.Z., Yu, J., Dust8areds.: Enabling Context-
Aware Web Services: Methods, Architectures, and TechiesogChapman and Hall/CRC
(2010) 469-494

11. Brdiczka, O., Langet, M., Maisonnasse, J., Crowley, Dietecting human behavior models
from multimodal observation in a smart home. |IEEE transastion automation sciences
and engineering (2009) 588-597

12. Day, W.H., Edelsbrunner, H.: Efficient algorithms foglmmerative hierarchical clustering
methods. Journal of Classificatidr(1984) 1-24

Semantic Sensor Networks 2011 13



