
SPLENDID: SPARQL Endpoint Federation Exploiting
VOID Descriptions

Olaf Görlitz and Steffen Staab

Institute for Web Science and Technology
University of Koblenz-Landau, Germany
{goerlitz,staab}@uni-koblenz.de
http://west.uni-koblenz.de/

Abstract. In order to leverage the full potential of the Semantic Web it is neces-
sary to transparently query distributed RDF data sources in the same way as it has
been possible with federated databases for ages. However, there are significant
differences between the Web of (linked) Data and the traditional database ap-
proaches. Hence, it is not straightforward to adapt successful database techniques
for RDF federation. Reasons are the missing cooperation between SPARQL end-
points and the need for detailed data statistics for estimating the costs of query
execution plans. We have implemented SPLENDID, a query optimization strat-
egy for federating SPARQL endpoints based on statistical data obtained from
voiD descriptions [1].

1 Introduction

A large amount of structured data is freely available on the web and can be accessed by
machines in various ways. RDF [11] and the SPARQL [8] query language are essential
parts of the evolving Web of Data. Moreover, the Linked Data principles1 give guide-
lines on how to interconnect different datasets. However, answering complex queries
across different RDF data sources, like in federated databases, is not trivial to imple-
ment. Two different paradigms are typically applied. The data warehousing approach
loads all data sets into one large repository and executes queries efficiently employing
optimized index structures. But changes in the original data are not easily accounted
for. Distributed Query Processing, on the other hand, executes queries on the actual
distributed data sources and aggregates the returned results. However, query planning
requires a-priori knowledge about the data sources to judge whether a data source can
return results for a query and to apply sophisticated query optimization techniques, as
known from traditional databases.

Statistical information can be extracted from RDF data dumps. But dumps may not
always be available, e.g. due to legal issues, or frequent statistics recalculation may
become expensive for changing data. Instead, we exploit the Vocabulary of Interlinked
Datasets [1] (VOID) which already incorporates statistical information. However, there
is a trade-off between the compactness of a data source representation and the level
of precision for communicating statistical details that may be expensive to built, store

1 http://esw.w3.org/SweoIG/TaskForces/CommunityProjects/LinkingOpenData

and maintain. VOID is positioned at the sparse end of a data description vocabulary. It
was not initially designed for being used for query optimization. But we believe that
this is a reasonable choice. However, it requires to rethink existing query federation
mechanisms in order to provide optimal source selection and query routing efficiency.

We present SPLENDID, a query federation strategy for SPARQL endpoints. In con-
trast to other existing federation approaches that assume an arbitrary level of detail for
statistics-based source selection, query optimization and query execution, SPLENDID
solely relies on VOID statistics. Thus, we can integrate virtually any RDF data source
found in the Semantic Web.

2 Scenario

Researchers in the life science domain have numerous databases at hand which contain
detailed information about pathways, genes, proteins, drugs and so forth. Data integra-
tion is an active research area [5] and some of these datasets are also available as RDF
[2] with links to other datasets. Imagine a researcher is looking for pain relieving drugs
similar to Acetaminophen. The search request can be formulated as ”drugs based on En-
zyme Cytochrome P450 3A4”. In order to obtain answers for this request data sources
like Kegg, ChEBI, Drugbank, and UniProt have to be examined. But the researcher
does not want to do this by hand. Instead, he uses a search tool which translates the re-
quest into a SPARQL query and processes it transparently across all known life science
datasets. The results are aggregated and presented to the researcher as if there were
retrieved from one large database. This is possible as all the datasets offer access to
their data via SPARQL endpoints and return results as RDF. Information about the data
in each dataset is provided as VOID descriptions [1] (c.f. Fig. 1) such that the search
tool can determine which data sources to contact for specific information. Since RDF,
SPARQL and VOID are core technologies of the Semantic Web, the data federation is
applicable for other domains as well.

1 :ChEBI a vo id :Da tase t ;
2
3 # general i n f o rma t i on
4 d c t e r m s : t i t l e ” ChEBI ” ;
5 dc te rms :desc r i p t i on ” Chemical E n t i t i e s ” ;
6 foaf:homepage
7 <http://chebi.bio2rdf.org/>
8 vo id :spa rq lEndpo in t
9 <http://chebi.bio2rdf.org/sparql> ;
10
11 # simple data s t a t i s t i c s :
12 v o i d : t r i p l e s ” 7325744 ” ;
13 v o i d : e n t i t i e s ” 50477 ” ;
14 v o i d : p r o p e r t i e s ” 28 ” ;
15 v o i d : d i s t i n c t S u b j e c t s ” 50477 ” ;
16 v o i d : d i s t i n c t O b j e c t s ” 772138 ” ;

17 # e n t i t y count per concept
18 v o i d : c l a s s P a r t i t i o n [
19 v o i d : c l a s s chebi:Compound ;
20 v o i d : e n t i t i e s ” 50477 ” .
21] ;
22
23 # t r i p l e count per p red ica te
24 v o i d : p r o p e r t y P a r t i t i o n [
25 v o i d : p r o p e r t y b i o : f o rmu la ;
26 v o i d : t r i p l e s ” 39555 ” ;
27] , [
28 v o i d : p r o p e r t y bio: image ;
29 v o i d : t r i p l e s ” 34055 ” ;
30] , [
31 . . .
32] .

Fig. 1. VOID description excerpt for the ChEBI dataset containing general information and statis-
tical data, like total triple count and number of occurrences of predicates and instances. (names-
pace are omitted for better readability, see http://void.rkbexplorer.com/ for more examples)

3 Related Work

One of the first RDF federation appraoches was presented by Stuckenschmidt et al.[19].
A path index is created for the graph structure of the data sets and then used for the
query optimization to match longest paths in the query. More complex structures than
paths are not supported. Harth et al. [9] use a QTree for indexing the content of many
data sources. The QTree is initialized with triples from seed data sources which are
hashed by subject, predicate, and object into buckets along the three dimensions of the
QTree. Source selection and ranking is done by identifying all QTree buckets matching
a query’s triple and join patterns. Ladwig and Tran [10] apply full indexing for all triples
and the join combination of triples similar to [12, 21]. This allows for accurate source
selection and result size estimation. However, all of the aforementioned approaches
require raw triples to be indexed. Hence, they are not applicable for scenarios where
access to statistical data is restricted to VOID descriptions.

DARQ [13] employs hand crafted data source descriptions similar to VOID. Besides
basic triple and entity counts it also allows for defining average selectivity estimates for
combinations of subject, predicate, and object and includes restrictions (so called ca-
pabilities) on satisfiable subject, object values. FedX [17] focuses on efficient query
execution techniques using chunked semi-joins. It does not use any precomputed statis-
tics for query optimization but solely relies on join order heuristics. Source selection is
based on SPARQL ASK queries and the maintainance of a ASK history. Recent work
by Buil-Arada et. al [4] investigates the complexity and optimization of SPARQL 1.1
federation2 queries where data sources are already assigned to query expressions. Net-
worked Graphs [14] integrate distributed RDF data sources via a declarative SPARQL
based view mechanism.

4 SPLENDID: SPARQL Endpoint Federator

The main components of SPLENDID are the Index Manager, the Query Optimizer, and
the Query Executor (c.f. Fig. 2). The query parser transforms the textual representation
of a SPARQL query into an abstract syntax tree, which can be handled by the query
optimizer. The result of the query optimization is a query execution plan which is pro-
cessed by the query executor in order to retrieve and join the result tuples. The query
parser, the query executor, and the result serializer in SPLENDID are based on standard
methods and will not be discussed in detail.

4.1 Index Manager

The statistics of VOID descriptions are aggregated in a local index by the Index Man-
ager. General information, like triple count, the number of distinct predicates, subjects,
and objects are stored as attributes for every SPARQL endpoint. The statistical informa-
tion for every predicate and type are organized in inverted indexes Ip : {(p,{(di,ci)})}
and Iτ : {(τ,{(di,ci)})} which map predicates and types to a set of tuples containing
the data source d and the number of occurrences in the data source.

2 http://www.w3.org/TR/sparql11-federated-query/

Index Manager

Query
Executor

Query
Optimizer

Query Interface (SPARQL)

Query Parser / Result Serializer
SPARQL

voiD

SPARQL

voiD
SPARQL

voiD

Fig. 2. Architecture of the SPLENDID Federator.

4.2 Query Optimizer

The SPLENDID query optimizer transforms a given query into a semantically equiva-
lent query that exhibits low costs in terms of processing time and communication over-
head. Three optimization steps are applied 1) query rewriting, 2) data source selection,
and 3) cost-based join order optimization. Query rewriting is an optimization of the
logical tree structure of a query, e.g. heuristics are used to split up complex filter ex-
pressions and relocate them close to operators which produce bindings for the filtered
variables. In the following the second and third step will be discussed in more detail.

Data Source Selection Each triple pattern in a query may potentially be answered by
different data sources. Hence, we need to identify all SPARQL endpoints which can
return results for them. First, each triple pattern with a bound predicate is mapped to
a set of data sources using the index Ip. Triple patterns which have rdf:type as predi-
cate and a bound object variable are mapped by using the index Iτ . For triple patterns
with unbound predicates we assign all data sources as there is no further information
available from the VOID descriptions.

Refining selected data sources The precision of the source selection is important. Re-
questing data from wrongly identified data sources, which can not return any results,
is expensive in terms of network communication and query processing cost. For ex-
ample, the predicate rdfs:label may occur in almost all data sources, whereas the triple
pattern (?x rdfs:label ”ID 1652”) may only be matched by one data source. Hence, for
triple patterns with bound variables which are not covered in the VOID statistics we
send a SPARQL ASK query including the triple pattern to all pre-selected data sources
and remove sources which fail the test. This pruning of data sources before the actual
join order optimization is more efficient than accepting no results for regular SPARQL
SELECT queries. Algorithm 1 shows in detail how the source selection is done.

Building Sub Queries. Triple patterns must be sent to all selected data sources inde-
pendently, even if a group of triple patterns shares exactly the same set of sources.
This ensures that results for individual triple patterns can be joined across data sources.
However, if a source is exclusively selected for a set of triple patterns all of them can be
combined into a single sub query. This is termed exclusive groups in FedX [17]. Another
option for pattern grouping exists for triple patterns with the predicate owl:sameAs and

Algorithm 1 Source Selection for triple patterns using VOID and ASK queries.
Require: Ip; Iτ ; D = {d1, . . . ,dm}; T = {t1, . . . , tn} // indexes, data sources, and triple patterns
1: for each ti ∈ T do
2: sources = /0
3: s = sub j(ti); p = pred(ti); o = ob j(ti)
4: if ! bound(p) then
5: sources = D // assign all sources for unbound predicate
6: else
7: if p = rdf:type ∧ bound(o) then
8: sources = Iτ (o)
9: else

10: sources = Ip(p)
11: end if
12: end if
13: // prune selected sources with ASK queries
14: if ! bound(p)∨bound(s)∨bound(o) then
15: for each di ∈ sources do
16: if ASK(di, ti) 6= true then
17: sources = sources/{di}
18: end if
19: end for
20: end if
21: end for

unbound subject variable. Under the assumption that all data sources define owl:sameAs
links for their own data, we can combine triple patterns which contain the same un-
bound variable as defined as the subject of the owl:sameAs pattern, e.g. variable ?y in
{ ?x foaf:knows ?y . ?y owl:sameAs ?z }. The sameAs optimization can only be en-
abled manually, if no 3rd party dataset with external owl:sameAs links is included in
the federation.

Join Order Optimization SPLENDID employs Dynamic Programming [18], a flexi-
ble optimization strategy often used in traditional relational databases, to optimize the
join order of SPARQL basic graph patterns. Using the sub queries generated by the
source selection step, all possible physical query execution plans are iterated and infe-
rior plans are pruned based on an overall cost estimate for executing all operators of a
query plan. Query execution plans can have different tree structures. We prefer bushy
trees since it has been shown in [20] that they are a good choice for SPARQL queries.

Join Implementation We consider two different join execution strategies, 1) request-
ing result tuples for the join arguments in parallel from the SPARQL endpoints to join
them locally, and 2) using the results of the first join argument to substitute unbound
variables in the second join argument with a repeated evaluation for every binding. The
first approach is well suited for retrieving two small result sets which can be joined
locally, while the second one can significantly reduce the network overhead if one re-
sult set is large and the selectivity of the join variable is high. We have implemented

the first strategy with hash joins (SPLENDIDH) and the second one with bind joins [7]
(SPLENDIDB).

Cost Function In order to compare two equivalent query execution plans with different
join order and different physical join operators we need to calculate the total execution
cost. Since the network communication has the highest impact on the overall cost, our
cost model currently only includes the cost for sending queries to a SPARQL endpoint
and the cost for receiving the results. For simplification, we assume that the size of all
queries is the same, i.e. they require the same number of packages to be transmitted
over the network, and all result tuples are considered to be of the same average size as
well. Formally, we define the transfer cost for hash join and bind join as follows

tc(q1 onH q2) = card(q1) · crt + card(q2) · crt +2 · csq (1)
tc(q1 onB q2) = card(q1) · crt + card(q1) · csq + card(q′2) · crt (2)

The cost for sending a SPARQL query is csq and the cost for receiving a single result
tuple is crt . The number of result tuples which will be returned for a query q is defined
by card(q). For the bind join the result size of the second join argument is reduced by
the bindings of the first join argument which is expressed by card(q′2).

Cardinality Estimation The reliability of a query’s estimated processing cost mainly
depends on the accuracy of the result cardinality estimation. Although detailed statistics
yield better estimates, we can also observe that estimation errors are growing with the
number of joins. In order to estimate the cardinality of a basic graph pattern we first
need to estimate the cardinality of all individual triple patterns and then calculate the
join cardinality.

Single Triple Pattern Due to the restriction of VOID statistics to predicates and types
we can only determine the exact cardinality for triple patterns with bound predicate or
for triple pattern with rdf:type and bound object. The cardinality estimation of all other
variations of bound variables relies on estimates as follows.

cardd(?, p,?) = cardd(p)
cardd(s, p,?) = cardd(p) · sel.sd(p)
cardd(?, p,o) = cardd(p) · sel.od(p)

cardd(s,?,?) = |d| · sel.sd

cardd(?,?,o) = |d| · sel.od

cardd(s,?,o) = |d| · sel.sd · sel.od

The cardinality cardd(p)) of a predicate p in a data source d is the number of triples
in d which contain p as the predicate. The number of all triples in data source d is |d|.
For bound subjects and bound objects we use their average selectivity in combination
with a bound predicate sel.sd(p) and sel.od(p) or without a bound predicate sel.sd and
sel.od . The average selectivity is defined as the fraction of triples with the same subject
or object if subjects and objects were uniformly distributed and independent from the
predicate.

Pattern Groups Star shaped query pattern are common in SPARQL queries and typi-
cally match subjects with certain attributes. Adding a triple pattern with the same sub-
ject introduces another restriction on the subject but depending on the object variable,
whether it is bound or not, the result size can decrease or increase. Consider the two
following queries with two triple patterns each.

?x :lives in ”Berlin” .
?x :has name ”John”

?x :lives in ”Berlin” .
?x :has friend ?y

In the first case the result size is reduced by the second pattern whereas in the second
case the result size increases. To capture this behavior we handle triple patterns with the
same subject separately. First, all triple patterns with the same subject are grouped. Then
we take the minimum cardinality of all patterns with a bound object. The remaining
patterns with an unbound object are simply multiplied with the minimum value and the
average selectivity of the subject.

cardd(T) = min(cardd(Tbound)) ·∏ (sel.sd · cardd(Tunbound))

The combination of triple patterns with different subjects is a join in the common
sense and will be computed based on the join cardinality.

Combine Results of Multiple Sources The results obtained for a sub query which is
evaluated on multiple data sources need to be combined. For simplicity we assume that
all data sources return distinct result tuples. Hence, the cardinality across multiple data
sources is the Union of the individual cardinalities.

Join Cardinality We compute the join cardinality as

card(q1 on q2) = card(q1) · card(q2) · selon(q1,q2)

where the selon is the join selectivity of the two input relations. The join selectivity
defines how many bindings of one relation match with bindings of the other relation.
It is a reduction factor which depends on the selectivity of the join variable in both
datasets. We use the average selectivity of the join variable as the join selectivity.

5 Evaluation

The goal of the evaluation is to show that SPLENDID is able to achieve good query
execution performance for real world federation scenarios. We use FedBench [15] as
evaluation infrastructure3 and analyze query execution times for different queries and
settings. We also compare SPLENDID with other federation implementations.

5.1 Benchmark Setup

RDF benchmarks like BSBM [3] and SP2B [16] are mainly designed for the evaluation
of triple stores which keep their data in a single large repository. Although a benchmark

3 http://code.google.com/p/fbench/

Table 1. FedBench datasets used for the evaluation.

Data Set version #triples #subjects #pred. #objects #types #links
DBpedia subset1 3.5.1 43.6M 9.50M 1063 13.6M 248 61.5k
GeoNames 2010-10-06 108M 7.48M 26 35.8M 1 118k
LinkedMDB 2010-01-19 6.15M 694k 222 2.05M 53 63.1k
Jamendo 2010-11-25 1.05M 336k 26 441k 11 1.7k
New York Times 2010-01-13 335k 21.7k 36 192k 2 31.7k
SW Dog Food 2010-11-25 104k 12.0k 118 37.5k 103 1.6k
KEGG 2010-11-25 1.09M 34.3k 21 939k 4 30k
ChEBI 2010-11-25 7.33M 50.5k 28 772k 1 -
Drugbank 2010-11-25 767k 19.7k 119 276k 8 9.5k
DBpedia subset 3.5.1 43.6M 9.50M 1063 13.6M 248 61.5k

1 includes the ontology, infobox types plus mapped properties, titles, article categories with labels,
Geo coordinates, images, SKOS categories, and links to New York Times and Linked Geo Data.

dataset may be split up, it is difficult to create partitions which resemble the character-
istics of real world datasets. Moreover, as shown in [6] there are significant differences
concerning the structuredness of artificial data sets and real world data sets. Hence, the
authors recommend not to use artificial datasets for such evaluations. To the best of our
knowledge the recently published FedBench [15] is the only real federation benchmark
which was explicitly designed for this purpose.

The FedBench datasets are carefully chosen, with respects to size, diversity, number
of interlinks, etc. The benchmark queries resemble typical requests on these datasets
and their structure ranges from simple star and chain queries to complex graph patterns.
All queries cover at least two different data sources. Table 1 gives details about the size
of the data sets along with some statistical information. The number of sources which
contribute results to a query and the number of result tuples is shown in following table.

CD1 CD2 CD3 CD4 CD5 CD6 CD7 LS1 LS2 LS3 LS4 LS5 LS6 LS7
#sources 2 2 5 5 5 4 5 2 4 2 2 3 3 3
#results 90 1 2 1 2 11 1 1159 333 9054 3 393 28 144

Due to the unpredictable availability and latency of the original SPARQL endpoints
of the benchmark dataset we used local copies of them which were hosted on five 64bit
Intel(R) Xeon(TM) CPU 3.60GHz server instances running Sesame 2.4.2 with each
instance providing the SPARQL endpoint for one life science and for one cross domain
dataset. The evaluation was performed on a separate server instance with 64bit Intel(R)
Xeon(TM) CPU 3.60GHz and a 100Mbit network connection.

Life Science Query 5:
SELECT ?drug ?keggUrl ?chebiImage WHERE {

?drug r d f : type drugbank : drugs .
?drug drugbank : keggCompoundId ?keggDrug .
?keggDrug b i o 2 r d f : u r l ?keggUrl .
?drug drugbank : genericName ?drugBankName .
?chebiDrug p u r l : t i t l e ?drugBankName .
?chebiDrug chebi : image ?chebiImage .

}

Cross Domain Query 3:
SELECT ?pres ? par t y ?page WHERE {

?pres r d f : type dbpedia−owl : Pres ident .
?pres dbpedia−owl : n a t i o n a l i t y dbpedia : Un i ted Sta tes .
?pres dbpedia−owl : pa r t y ? par t y .
?x nyt imes : topicPage ?page .
?x owl : sameAs ?pres

}

Fig. 3. Example FedBench Queries

5.2 Evaluation of Source Selection

As mentioned before, the accuracy of the source selection has a large influence on the
query processing time. Therefore, we investigated how the information from the VOID
descriptions effect the accuracy of the source selection. For each query, we look at
the number of sources selected and the resulting number of requests to the SPARQL
endpoints. We tested three different source selection approaches, based on 1) predicate
index only (no type information), 2) predicate and type index, and 3) predicate and type
index and grouping of sameAs patterns as described in Section 4.2.

 0

 2

 4

 6

 8

 10

 12

CD1 CD2 CD3 CD4 CD5 CD6 CD7 LS1 LS2 LS3 LS4 LS5 LS6 LS7

se

le
ct

ed
 s

ou
rc

es

VOID no types
VOID with types

VOID with types, GSA

 0

 5

 10

 15

 20

 25

 30

 35

CD1 CD2 CD3 CD4 CD5 CD6 CD7 LS1 LS2 LS3 LS4 LS5 LS6 LS7

re
qu

es
ts

VOID no types
VOID with types

VOID with types, GSA

Fig. 4. Number of selected data sources (left) and number of SPARQL endpoints requests (right)
when using VOID statistics with or without type information, grouping sameAs patterns (GSA).

Figure 4 shows that for the life science queries the number of selected sources is
reduced if type information is available. For the cross domain queries it has no effect
as they do not contain any triple pattern with rdf:type (except for CD3). In contrast, the
grouping of sameAs patterns is most effective for the cross domain queries since the
life science queries do not include sameAs triples (except for LS3). Queries CD1 and
LS2 contain a triple pattern with no bound variable. Hence, all sources are selected.
From the results, we conclude that type information is important and should always
be included in VOID descriptions. In addition, the number of requests is reduced sig-
nificantly, if sameAs links are not provided by 3rd party ”link sets” but included in
the original datasets. For the FedBench datasets we can safely apply sameAs grouping
without sacrificing the result completeness.

5.3 Evaluation of Query Optimization

We measured the query evaluation times for the different optimizer configurations to
see how the use of hash join, bind join, and the sameAs grouping affects the overall
performance of the query federation. To ensure a consistent evaluation setup, we used
the source selection based on SPARQL ASK queries. All queries were evaluated ten
times with a two minute timeout. The average query evaluation time is shown in Fig. 5.

First note that there are query execution plans which did not finish within the time
limit. Generally, we can observe that the bind join has the shortest query evaluation
times for all cross domain queries and for about half of the life science queries. But
there are also three query execution plans using hash joins which perform best for the
life science queries LS1, LS5, and LS7. One reason for the good results of the bind join
are large intermediate result sets, which are produced by the queries and processed most

ti
m
e
o
u
t

ti
m
e
o
u
t

ti
m
e
o
u
t

ti
m
e
o
u
t

ti
m
e
o
u
t

ti
m
e
o
u
t

ti
m
e
o
u
t

ti
m
e
o
u
t

ti
m
e
o
u
t

Fig. 5. Query evaluation time for cross domain (CD) and life science (LS) queries. The optimiza-
tion employs either bind join (B) or hash join (H), and groups sameAs patterns (GSA).

efficiently if they are not transmitted completely over the network. Currently, SPLEN-
DID does not include optimizations of the actual query execution. Hence, hash joins
could benefit in the future if an efficient parallel retrieval of result tuples would be im-
plemented. Note also the reduced evaluation time from grouping sameAs patterns in the
cross domain queries, which is most significant for CD3-CD5.

In general we see that neither bind join nor hash join is superior to the other. The
combination of both join implementations in one query execution plan should theoret-
ically yield the best optimization results. As we can see in Fig. 6, this is true for the
cross domain dataset, as all query plan achieve the best performance compared to Fig.
5. But we also see that for the life science queries there is still space for improvements.

 0.01

 0.1

 1

 10

 100

 1000

CD1 CD2 CD3 CD4 CD5 CD6 CD7

E
va

lu
at

io
n

T
im

e
(s

)

SPLENDID
SPLENDID GSA

 0.01

 0.1

 1

 10

 100

 1000

LS1 LS2 LS3 LS4 LS5 LS6 LS7

E
va

lu
at

io
n

tim
e

(s
)

SPLENDID
SPLENDID GSA

Fig. 6. Query evaluation time for cross domain (CD) and life science (LS) queries when combin-
ing bind join and hash join in query execution plans, and grouping of sameAs patterns (GSA).

5.4 Comparison with other Federation Approaches

SPLENDID was compared to other state-of-the-art SPARQL federation approaches,
namely Sesame’s AliBaba, DARQ, and the recently published FedX. AliBaba and FedX
use heuristics to find the best join order whereas DARQ and SPLENDID use statistical
information and optimize query plans based on dynamic programming. Only SPLEN-
DID utilizes hash joins. As Fig. 7 clearly shows, SPLENDID and FedX return results
for all queries. AliBaba and DARQ fail to return results for six out of the 14 queries for
different reasons. AliBaba generates malformed sub queries for CD3, CD5, LS6, and
LS7. DARQ can not handle the unbound predicate in CD1 and LS2. For CD3 and CD5
DARQ opens too many connections to GeoNames. All other unsuccessful queries take
longer than the time limit of five minutes. Overall, FedX has the best query evaluation
performance. The reason is its novel and efficient query execution based on block trans-
mission of result tuples and parallelization of joins. However, there is only a significant
difference between FedX and SPLENDID for CD6, CD7, LS3, LS5-7. For the other
queries SPLENDID is close to FedX and for CD3 and CD4 even slightly faster, which
indicates that SPLENDID, indeed, generates better query execution plans.

ti
m

e
o
u
t

ti
m

e
o
u
t

n
o
t

su
p

p
o
rt

e
d

e
rr

o
r

(c
o
n

n
e
ct

io
n

s)

e
rr

o
r

(c
o
n

n
e
ct

io
n

s)
e
rr

o
r

(q
u

e
ry

)

e
rr

o
r

(q
u

e
ry

)

n
o
t

su
p

p
o
rt

e
d

ti
m

e
o
u
t

e
rr

o
r

(q
u

e
ry

)

e
rr

o
r

(q
u

e
ry

)

ti
m

e
o
u
t

Fig. 7. Comparing the query evaluation time for state-of-the-art SPARQL endpoint federation ap-
proaches, i.e. Sesame AliBaba, DARQ, FedX, and SPLENDID, using the FedBench cross domain
(CD) and life science (LS) queries.

6 Conclusion

SPLENDID allows for transparent query federation over distributed SPARQL end-
points. In order to achieve a good query execution performance, data source selection
and query optimization is based on basic statistical information which is obtained from
VOID descriptions. The utilization of open semantic web standards, like VOID and
SPARQL endpoints, allows for flexible integration of various distributed and linked
RDF data sources. We have described in detail the implementation of the data source
selection and the join order optimization. The evaluation shows that our approach can
achieve good query performance and is competitive compared to other state-of-the-art
federation implementations.

In our analysis of the source selection we came to the conclusion that at least pred-
icate and type statistics should be included in VOID description for RDF datasets. The
use of 3rd party sameAs links, however, can significantly increase the number of re-
quests and thus, hamper the efficiency of query execution plans. The comparison of
the two employed physical join implementations has shown that the network overhead
plays an important role. Both hash join and bind join can significantly reduce the query
processing time for certain types of queries. With SPLENDID we also like to advocate
the adoption of VOID statistics for Linked Data.

As next steps, we plan to investigate whether VOID descriptions can easily be ex-
tended with more detailed statistics in order to allow for more accurate cardinality es-
timates and, thus, better query execution plans. On the other hand, the actual query
execution has not yet been optimized in SPLENDID. Therefore, we plan to integrate
optimization techniques as used in FedX. Moreover, the adoption of the SPARQL 1.1
federation extension will also allow for more efficient query execution.

Acknowledgments This research has been co-funded by the German BMBF in the Col-
laborationCloud project and by the EU in FP7 in the ROBUST project (257859).

References

1. K. Alexander, R. Cyganiak, M. Hausenblas, and J. Zhao. Describing Linked Datasets – On
the Design and Usage of voiD, the “Vocabulary Of Interlinked Datasets”. In Proceedings of
the Linked Data on the Web Workshop, Madrid, Spain, 2009.

2. F. Belleau, M.A. Nolin, N. Tourigny, P. Rigault, and J. Morissette. Bio2RDF: Towards
a mashup to build bioinformatics knowledge systems. Journal of biomedical informatics,
41(5):706–716, 2008.

3. C. Bizer and A. Schultz. The Berlin SPARQL Benchmark. International Journal on Seman-
tic Web and Information Systems, 5(2):1–24, 2009.

4. C. Buil-Aranda, M. Arenas, and O. Corcho. Semantics and Optimization of the SPARQL 1.1
Federation Extension. In 8th Extended Semantic Web Conference, Heraklion, Greece, 2011.

5. K. Cheung, H. R. Frost, M. S. Marshall, E. Prud’hommeaux, M. Samwald, J. Zhao, and
A. Paschke. A journey to Semantic Web query federation in the life sciences. BMC bioin-
formatics, 10 Suppl 1, January 2009.

6. S. Duan, A. Kementsietsidis, K. Srinivas, and O. Udrea. Apples and Oranges: A Comparison
of RDF Benchmarks and Real RDF Datasets. In Proceedings of the International Conference
on Management of Data (SIGMOD), page 145, New York, New York, USA, 2011.

7. L.M. Haas, D. Kossmann, E. L. Wimmers, and J. Yang. Optimizing Queries across Diverse
Data Sources. In Proceedings of the 23rd International Conference on Very Large Data
Bases, pages 276–285, Athens, Greece, 1997.

8. S. Harris and A. Seaborne. SPARQL Query Language 1.1, W3C Working Draft 26 January
2010. http://www.w3.org/TR/sparql11-query/.

9. A. Harth, K. Hose, M. Karnstedt, A. Polleres, K-U. Sattler, and J. Umbrich. Data Summaries
for On-Demand Queries over Linked Data. In Proceedings of the 19th International World
Wide Web Conference, pages 411–420, Raleigh, NC, USA, 2010.

10. G. Ladwig and T. Tran. Linked Data Query Processing Strategies. In Proceedings of the 9th
International Semantic Web Conference, pages 453–469, 2010.

11. F. Manola and E. Miller. RDF Primer, W3C Recommendation 10 February 2004. http:
//www.w3.org/TR/rdf-primer/.

12. T. Neumann and G. Weikum. RDF-3X: a RISC-style Engine for RDF. In Proceedings of the
34th International Conference on Very Large Data Bases, pages 647–659, Auckland, New
Zealand, 2008.

13. B. Quilitz and U. Leser. Querying Distributed RDF Data Sources with SPARQL. In Pro-
ceedings of the 5th European Semantic Web Conference, pages 524–538, Tenerife, Canary
Islands, Spain, 2008.

14. S. Schenk and S. Staab. Networked Graphs: A Declarative Mechanism for SPARQL Rules,
SPARQL Views and RDF Data Integration on the Web. In Proceeding of the 17th Interna-
tional World Wide Web Conference, pages 585–594, Beijing, China, 2008.

15. M. Schmidt, O. Görlitz, P. Haase, A. Schwarte, G. Ladwig, and T. Tran. FedBench: A
Benchmark Suite for Federated Semantic Data Query Processing. In Proceedings of the 10th
International Semantic Web Conference, Bonn, Germany, 2011.

16. M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel. SP2Bench: A SPARQL Performance
Benchmark. In Proceedings of the 25th International Conference on Data Engineering,
pages 222–233, Shanghai, 2009.

17. A. Schwarte, P. Haase, K. Hose, R. Schenkel, and M. Schmidt. FedX: Optimization Tech-
niques for Federated Query Processing on Linked Data. In Proceedings of the 10th Interna-
tional Semantic Web Conference, Bonn, Germany, 2011.

18. P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and T. Price. Access Path Selection in
a Relational Database Management System. In Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, pages 23–34, Boston, MA, USA, 1979.

19. H. Stuckenschmidt, R. Vdovjak, G-J. Houben, and J. Broekstra. Index Structures and Algo-
rithms for Querying Distributed RDF Repositories. In Proceedings of the 13th International
World Wide Web Conference, pages 631–639, New York, NY, USA, 2004.

20. M.E. Vidal, E. Ruckhaus, T. Lampo, A. Martı́nez, J. Sierra, and A. Polleres. Efficiently
Joining Group Patterns in SPARQL Queries. In 7th Extended Semantic Web Conference,
pages 228–242, Heraklion, Crete, Greece, 2010. Springer.

21. C. Weiss, P. Karras, and A. Bernstein. Hexastore: Sextuple Indexing for Semantic Web
Data Management. In Proceedings of the 34th International Conference on Very Large Data
Bases, pages 1008–1019, Auckland, New Zealand, 2008.

