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Abstract. The proliferation of semantic data on the Web requires
RDF database systems to constantly improve their scalability and
transactional efficiency. At the same time, users are increasingly
interested in investigating or visualizing large collections of online data
by performing complex analytic queries. This paper introduces a novel
database system for RDF data management called dipLODocus[RDF] ,
which supports both transactional and analytical queries efficiently.
dipLODocus[RDF] takes advantage of a new hybrid storage model for
RDF data based on recurring graph patterns. In this paper, we describe
the general architecture of our system and compare its performance to
state-of-the-art solutions for both transactional and analytic workloads.

1 Introduction

Despite many recent efforts, the lack of efficient infrastructures to manage RDF
data is often cited as one of the key problems hindering the development of
the Semantic Web. Last year at ISWC, for instance, the two industrial keynote
speakers (from the New York Times and Facebook) pointed out that the lack
of an open-source, efficient and scalable alternative to MySql for RDF data was
the number one problem of the Semantic Web.

The Semantic Web community is not the only one suffering from a lack of
efficient data infrastructures. Researchers and practitioners in many other fields,
from business intelligence to life sciences or astronomy, are currently crumbling
under gigantic piles of data they cannot manage or process. The current crisis in
data management is from our perspective the result of three main factors: i) rapid
advances in CPU and sensing technologies resulting in very cheap and efficient
processes to create data ii) relatively slow advances in primary, secondary and
tertiary storage (PCM memories and SSD disks are still expensive, while modern
SATA disks are singularly slow–with seek times between 5ms and 10ms typically)
and iii) the emergence of new data models and new query types (e.g., graph
reachability queries, analytic queries) that cannot be handled properly by legacy
systems. This situation resulted in a variety of novel approaches to solve specific
problem, for large-scale batch-processing [10], data warehousing [20], or array
processing [8].



Nonetheless, we believe that the data infrastructure problem is particularly
acute for the Semantic Web, because of its peculiar and complex data model
(which can be modeled as a constrained graph, as a ternary or n-ary relation,
or as an object-oriented model depending on the context) and of the very differ-
ent types of queries a typical SPARQL end-point must support (from relatively
simple transactional queries to elaborate business intelligence queries). The re-
cent emergence of distributed Linked Open Data processing and visualization
applications relying on complex analytic and aggregate queries is aggravating
the problem even further.

In this paper, we propose dipLODocus[RDF] , a new system for RDF data
processing supporting both simple transactional queries and complex analytics
efficiently. dipLODocus[RDF] is based on a novel hybrid storage model considering
RDF data both from a graph perspective (by storing RDF subgraphs or RDF
molecules) and from a “vertical” analytics perspective (by storing compact lists
of literal values for a given attribute). dipLODocus[RDF] trades insert complexity
for analytics efficiency: isolated inserts and simple look-up are relatively complex
in our system due to our hybrid model, which on the other hand enables us to
considerably speed-up complex queries.

The rest of this paper is structured as follows: we start by discussing re-
lated work in Section 2. Section 3 gives a high-level overview of our system and
introduces our hybrid storage scheme. We give a more detailed description of
the various data structures in dipLODocus[RDF] in Section 4. We describe how
our system handles common operation like bulk inserts, updates, and various
types of queries in Section 5. Section 6 is devoted to a performance evaluation
study, where we compare the performance of dipLODocus[RDF] to state-of-the-art
systems both for a popular Semantic Web benchmark and for various analytic
queries. Finally, we conclude in Section 7.

2 Related Work

Approaches for storing RDF data can be broadly categorized in three subcate-
gories: triple-table approaches, property-table approaches, and graph-based ap-
proaches. Many approaches have been proposed to optimize RDF query process-
ing; we list below some of the most popular approaches and systems. We refer
the reader to recent surveys of the field (such as [15], [13], or [16]) for a more
comprehensive coverage.

Triple-Table Storage: since RDF data can be seen as sets of subject-predicate-
object triples, many early approaches used a giant triple table to store all data.
Our GridVine [2, 7] system, for instance, uses a triple-table storage approach to
distribute RDF data over decentralized P2P networks using the P-Grid [1] dis-
tributed hash-table. More recently, Hexastore [21] suggests to index RDF data
using six possible indices, one for each permutation of the set of columns in
the triple table, leading to shorter response times but also a worst-case five-fold
increase in index space. Similarly, RDF-3X [17] creates various indices from a
giant triple-table, including indices based on the six possible permutations of the



triple columns, and aggregate indices storing only two out of the three columns.
All indices are heavily compressed using dictionary encoding and byte-wise com-
pression mechanisms. The query executor of RDF-3X implements a dedicated
cost-model to optimize join orderings and determine the cheapest query plan
automatically.

Property-Table Storage: various approaches propose to speed-up RDF query pro-
cessing by considering structures clustering RDF data based on their properties.
Wilkinson et al. [22] propose the use of two types of property tables: one con-
taining clusters of values for properties that are often co-accessed together, and
one exploiting the type property of subjects to cluster similar sets of subjects
together in the same table. Chong et al. [6] also suggest the use of property ta-
bles as materialized views, complementing a primary storage using a triple-table.
Going one step further, Abadi et al. suggest a fully-decomposed storage model
for RDF: the triples are in that case rewritten into n two-column tables where n
is the number of unique properties in the data. In each of these tables, the first
column contains the subjects that define that property and the second column
contains the object values for those subjects. The authors then advocate the use
of a column-store to compactly store data and efficiently resolve queries.

Graph-Based Storage: a number of further approaches propose to store RDF data
by taking advantage of its graph structure. Yan et al. [23] suggest to divide the
RDF graph into subgraphs and to build secondary indices (e.g., Bloom filters) to
quickly detect whether some information can be found inside an RDF subgraph
or not. BitMat [4] is an RDF data processing system storing the RDF graph as a
compressed bit matrix structure in main-memory. gStore [24] is a recent system
storing RDF data as a large, labeled, and directed multi-edge graph; SPARQL
queries are then executed by being transformed into subgraph matching queries,
that are efficiently matched to the graph using a novel indexing mechanism.
Several of the academic approaches listed above have also been fully imple-
mented, open-sourced, and used in a number of projects (e.g., GridVine1, Jena2,
and RDF-3X3).

A number of more industry-oriented efforts have also been proposed to store
and manage RDF data. Virtuoso4 is an object-relational database system offering
bitmap indices to optimize the storage and processing of RDF data. Sesame5 [5] is
an extensible architecture supporting various back-ends (such as PostgreSQL) to
store RDF data using an object-relational schema. Garlik’s 4Store6 is a parallel
RDF database distributing triples using a round-robin approach. It stores triple
in triple-tables (or quadruple-tables more precisely). BigOWLIM7 is a scalable
RDF database taking advantage of ordered indices and data statistics to optimize

1 http://lsirwww.epfl.ch/GridVine/
2 http://jena.sourceforge.net/
3 http://www.mpi-inf.mpg.de/neumann/rdf3x/
4 http://virtuoso.openlinksw.com/
5 http://www.openrdf.org/
6 http://4store.org/
7 http://www.ontotext.com/owlim/



queries. AllegroGraph8, finally, is a native RDF database engine based on a
quadruple storage.

3 System Rationale

Our own storage system in dipLODocus[RDF] can be seen as a hybrid structure
extending several of the ideas from above. Our system is built on three main
structures: RDF molecule clusters (which can be seen as hybrid structures bor-
rowing both from property tables and RDF subgraphs), template lists (storing
literals in compact lists as in a column-oriented database system) and an efficient
hash-table indexing URIs and literals based on the clusters they belong to.

Figure 1 gives a simple example of a few molecule clusters—storing informa-
tion about students—and of a template list—compactly storing lists of student
IDs. Molecules can be seen as horizontal structures storing information about
a given object instance in the database (like rows in relational systems). Tem-
plate lists, on the other hand, store vertical lists of values corresponding to
one type of object (like columns in a relational system). Hence, we say that
dipLODocus[RDF] is a hybrid system, following the terminology used for ap-
proaches such as Fractured Mirrors [19] or our own recent Hyrise system [12].
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Fig. 1. The two main data structures in dipLODocus[RDF] : molecule clusters, storing
in this case RDF subgraphs about students, and a template list, storing a list of literal
values corresponding to student IDs.

8 http://www.franz.com/agraph/allegrograph/



Molecule clusters are used in two ways in our system: to logically group sets
of related URIs and literals in the hash-table (thus, pre-computing joins), and to
physically co-locate information relating to a given object on disk and in main-
memory to reduce disk and CPU cache latencies. Template lists are mainly used
for analytics and aggregate queries, as they allow to process long lists of literals
efficiently. We give more detail about both structures below as we introduce the
overall architecture of our system.

4 Architecture

Figure 2 gives a simplified architecture of dipLODocus[RDF] . The Query Pro-
cessor receives the query from the client, parses it, optimizes it, and creates a
query plan to execute it. The hash-table uses a lexicographical tree to assign a
unique numeric key to each URI, stores metadata associated to that key, and
points to two further data structures: the molecule clusters, which are managed
by the Cluster Manager and store RDF sub-graphs, and the template lists, man-
aged by the Template Manager. All data structures are stored on disk and are
retrieved using a page manager and buffered operations to amortize disk seeks.
Those components are described in greater detail below.

key

Hash-Table

Clusters

Template Lists

disks

Buffered
operations

Template
ManagerQuery

Processor
Query

Optimizer Cluster
Manager

GetLists/
GetClusters Update Cluster

U
pd

at
e 

Te
m

pl
at

e

Queries 
& Inserts

Results

   
 W

or
kl

oa
d

URI

Fig. 2. The architecture of dipLODocus[RDF]



4.1 Query Processor

The query processor receives inserts, updates, deletes and queries from the
clients. It offers a SPARQL [18] interface and supports the most common features
of the SPARQL query language, including conjunctions and disjunctions of triple
patterns and aggregate operations. We use the RASQAL RDF Query Library9

to parse both incoming triples serialized in XML, as well as to parse SPARQL
queries. New triples are then handed to the Template and Cluster managers to
be inserted into the database. As for incoming queries, after being parsed, they
are rewritten as query trees in order to be executed. The query trees are passed
to the Query Optimizer, which rewrites the queries to optimize their execution
plans (cf. below Section 5). Finally, the queries are resolved bottom-up, by ex-
ecuting the leaf-operators first in the query tree. Examples of query processing
are given below in Section 5.

4.2 Template Manager

One of the key innovations of dipLODocus[RDF] revolves around the use of declar-
ative storage patterns [9] to efficiently co-locate large collections of related values
on disk and in main-memory. When setting-up a new database, the database ad-
ministrator may give dipLODocus[RDF] a few hints as to how to store the data on
disk: the administrator can give a list of triple patterns to specify the root nodes,
both for the template lists and the molecule clusters (see for instance above Fig-
ure 1, where “Student” is the root node of the molecule, and “StudentID” is
the root node for the template list). Cluster roots are used to determine which
clusters to create: a new cluster is created for each instance of a root node in
the database. The clusters contain all triples departing from the root node when
traversing the graph, until another instance of a root node is crossed (thus, one
can join clusters based on the root nodes). Template roots are used to determine
which literals to store in template lists.

In case the administrator gives no hint about the root nodes, the system
inspects the templates created by the template manager (see below) and takes
all classes as molecule roots and all literals as template roots (this is for example
the case for the performance evaluation we describe in Section 6). Optimizing
the automated selection of root nodes based on samples of the input data and
an approximate query workload is a typical automated design problem [3] and
is the subject of future work.

Based on the storage patterns, the template manager handles two main oper-
ations in our system: i) it maintains a schema of triple templates in main-memory
and ii) it manages template lists. Whenever a new triples enters the system, it
is passed to the template manager, which associates template IDs correspond-
ing to the triple by considering the type of the subject, the predicate, and the
type of the object. Each distinct list of “(subject-type, predicate, object-type)”
defines a new triple template. The triple templates play the role of an instance-
based RDF schema in our system. We don’t rely on the explicit RDF schema

9 http://librdf.org/rasqal/



to define the templates, since a large proportions of constraints (e.g., domains,
ranges) are often omitted in the schema (as it is for example the case for the
data we consider in our experiments, see Section 6). In case a new template is
detected (e.g., a new predicate is used), then the template manager updates its
in-memory triple template schema and inserts new template IDs to reflect the
new pattern it discovered. Figure 3 gives an example of a template. In case of
very inhomogeneous data sets containing millions of different triple templates,
wildcards can be used to regroup similar templates (e.g., “Student - likes - *”).
Note that this is very rare in practice, since all the datasets we encountered
so far (even those in the LOD cloud) typically consider a few thousands triple
templates at most.

The triple is then passed to the Cluster Manager, which inserts it in one
or several molecules. If the triple’s object corresponds to a root template list,
the object is also inserted into the template list corresponding to its template
ID. Templates lists store literal values along with the key of their corresponding
cluster root. They are stored compactly and segmented in sublists, both on
disk and in main-memory. Template lists are typically sorted by considering a
lexical order on their literal values—though other orders can be specified by
the database administrator when he declares the template roots. In that sense,
template lists are reminiscent of segments in a column-oriented database system.
Finally, the triple is inserted into the hash-table as well (see Figure 3 for an
example).
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Fig. 3. An insert using templates: an incoming triple (upper left) is matched to the
current RDF template of the database (right), and inserted into the hash-table, a
cluster, and a template list.

4.3 Cluster Manager

The Cluster Manager takes care of updating and querying the molecule clusters.
When receiving a new triple from the Template Manager, the cluster manager



inserts it in the corresponding cluster(s) by interrogating the hash-table (see Fig-
ure 3). In case the corresponding cluster does not exist yet, the Cluster Manager
creates a new molecule cluster, inserts the triple in the molecule, and inserts the
cluster in the list of clusters it maintains.

Similarly to the template lists, the molecule clusters are serialized in a very
compact form, both on disk and in main-memory. Each cluster is composed of two
parts: a list of offsets, containing for each template ID in the molecule the offset
at which the keys corresponding for the template ID are stored, and the list of
keys themselves. Thus, the size of a molecule, both on-disk and in main-memory,
is #TEMPLATES + (KEY SIZE ∗#TRIPLES), where KEY SIZE is the
size of a key (in bytes), #TEMPLATES is the number of templates IDs in
the molecule, and #TRIPLES is the number of triples in the molecule (we
note that this storage structure is much more compact than a standard list of
triples). To retrieve a given information in a molecule, the system first determines
the position of the template ID corresponding to the information sought in the
molecule (e.g., “FirstName” is the sixth template ID for the “Student” molecule
above in Figure 3). It then jumps to the offset corresponding to that position
(e.g., 6th offset in our example), reads that offset and the offset of the following
template ID, and finally retrieves all the keys/values between those two offsets
to get all the values corresponding to that template ID in the molecule.

4.4 Hash-Table

The hash-table is the central index in dipLODocus[RDF] ; the hash-table uses a
lexicographical tree to parse each incoming URI or literal and assign it a unique
numeric key value. The hash-table then stores, for every key and every template
ID, an ordered list of all the clusters IDs containing the key (e.g., “key 10011,
corresponding to a Course object [template ID 17], appears in clusters 1011, 1100
and 1101”; see also Figure 3 for another example). This may sound like a pretty
peculiar way of indexing values, but we show below that this actually allows us
to execute many queries very efficiently simply by reading or intersecting such
lists in the hash-table directly.

5 Common Operations

Given the main components and data structures described above, we describe
below how common operation such as inserts, updates, and triple pattern queries
are handled by our system.

5.1 Bulk Inserts

Inserts are relatively complex and costly in dipLODocus[RDF] , but can be ex-
ecuted in a fairly efficient manner when considered in bulk; this is a tradeoff
we are willing to make in order to speed-up complex queries using our various



data structures (see below), especially in a Semantic Web or LOD context where
isolated inserts or updates are from our experience rather infrequent.

Bulk insert is a n-pass algorithm (where n is the deepest level of a molecule) in
dipLODocus[RDF] , since we need to construct the RDF molecules in the clusters
(i.e., we need to materialize triple joins to form the clusters). In a first pass,
we identify all root nodes and their corresponding template IDs, and create all
clusters. The subsequent passes are used to join triples to the root nodes (hence,
the student clusters depicted above in Figure 1 are built in two phases, one for the
Student root node, and one for the triples directly connected to the Student).
During this operation, we also update the template lists and the hash-table
incrementally. Bulk inserts have been highly optimized in dipLODocus[RDF] , and
use an efficient page-manager to execute inserts for large datasets that cannot
be kept in main-memory.

5.2 Updates

As for other hybrid or analytic systems, updates can be relatively expensive
in dipLODocus[RDF] . We distinguish between two kinds of updates: in-place
and complex updates. In-place updates are punctual updates on literal values;
they can be processed directly in our system by updating the hash-table, the
corresponding cluster, and the template lists if necessary. Complex updates are
updates modifying object properties in the molecules. They are more complex
to handle than in-place updates, since they might require a rewrite of a list of
clusters in the hash-table, and a rewrite of a list of keys in the molecule clusters.
To allow for efficient operations, complex updates are treated like updates in
a column-store (see [20]): the corresponding structures are flagged in the hash-
table, and new structures are maintained in write-optimized structures in main-
memory. Periodically, the write-optimized structures are merged with the hash-
table and the clusters on disk.

5.3 Queries

Query processing in dipLODocus[RDF] is very different from previous approaches
to execute queries on RDF data, because of the three peculiar data structures
in our system: a hash-table associating URIs and literals to template IDs and
cluster lists, clusters storing RDF molecule clusters in a very compact fashion,
and template lists storing compact lists of literals. We describe below how a few
common queries are handled in dipLODocus[RDF] .

Triple Patterns: Triple patterns are relatively simple in dipLODocus[RDF] :
they are usually resolved by looking for a bound-variable (URI) in the hash-
table, retrieving the corresponding cluster numbers, and finally retrieving values
from the clusters when necessary. Conjunctions and disjunctions of triples pat-
terns can be resolved very efficiently in our system. Since the RDF nodes are
logically grouped by clusters in the hash-table, it is typically sufficient to read



the corresponding list of clusters in the hash table (e.g., for “return all students
following Course0”), or to intersect or take the union of several lists of clus-
ters in the hash table (e.g., for “return all students following Course0 whose

last names are D́oé’’) to answer the queries. In most cases, no join operation
is needed since joins are implicitly materialized in the hash-table and in the
clusters. When more complex join occurs, dipLODocus[RDF] resolves them using
standard hash-join operators.

Molecule Queries: Molecule queries or queries retrieving many val-
ues/instances around a given instance (for example for visualization purposes)
are also extremely efficient in our system. In most cases, the hash-table
is invoked to find the corresponding cluster, which contains then all the
corresponding values. For bigger scopes (such as the ones we consider in our
experimental evaluation below), our system can efficiently join clusters based
on the various root nodes they contain.

Aggregates and Analytics: Finally, aggregate and analytic queries can also
be very efficiently resolved by our system. Many analytic queries can be solved by
first intersecting lists of clusters in the hash-table, and then looking up values in
the remaining molecule clusters. Large analytic or aggregate queries on literals
(such as our third analytic query below, returning the names of all graduate
students) can be extremely efficiently resolved by taking advantage of template
lists (containing compact and sorted lists of literal values for a given template
ID), or by filtering template lists based on lists of cluster IDs retrieved from the
hash-table.

6 Performance Evaluation

To evaluate the performance of our system, we compared it to various RDF
database systems. The details of the hardware platform, the data sets and the
workloads we used are give below.

6.1 Hardware Platform

All experiments were run on a HP ProLiant DL360 G7 server with two Quad-
Core Intel Xeon Processor E5640, 6GB of DDR3 RAM and running Linux
Ubuntu 10.10 (Maverick Meerkat). All data were stored on recent 1.4 TB Serial
ATA disk.

6.2 Data Sets

The benchmark we used is one of the oldest and most popular benchmarks for Se-
mantic Web data called Lehigh University Benchmark (LUBM) [14]. It provides
an ontology describing universities together with a data generator and fourteen



queries. We used two data sets, the first one consisting of ten LUBM universities
(1’272’814 distinct triples, 315’003 distinct strings), and the second regrouping
one hundred universities (13’876’209 distinct triples, 3’301’868 distinct strings).

6.3 Workload

We compared the runtime execution for LUBM queries and for three analytic
queries inspired by an RDF analytic benchmark we recently proposed (the
BowlognaBench benchmark [11]). LUBM queries are criticized by some for their
reasoning coverage; this was not an issue in our case, since we focused on RDF DB
query processing rather than on reasoning capabilities. We keep an in-memory
representation of subsumption trees in dipLODocus[RDF] and rewrite queries au-
tomatically to support subclass inference for the LUBM queries. We manually
rewrote inference queries for the systems that do not support such functionalities
(e.g., RDF-3X).

The three additional analytic/aggregate queries that we considered are as
follows: 1) a query returning the professor who supervises the most Ph.D. stu-
dents 2) a query returning a big molecule containing all triples within a scope
of 2 of Student0 and 3) a query returning all graduate students.

6.4 Methodology

As for other benchmarks (e.g., tpc-x 10) we include a warm-up phase before
measuring the execution time of the queries. We first run all the queries in
sequence once to warm-up the systems, and then repeat the process ten times
(i.e., we run in total 11 batches containing all the queries in sequence for each
system). We report the mean values for each query and each system below as well
as a 95% confidence interval on run times. We assumed that the maximum time
for each query shouldn’t exceed 2 hours (we stopped the tests if one query took
more than two hours to be executed). We compared the output of all queries
running on all systems to ensure that all results were correct.

We tried to do a reasonable optimization job for each system, by following
the recommendations given in the installation guides for each system. We did not
try to optimize the systems any further, however. We performed no fine-tuning
or optimization for dipLODocus[RDF] .

We avoided the artifact of connecting to the server, initializing the DB from
files and printing results for all systems; we measured instead the query execution
times only.

6.5 Systems

We compared our prototype implementation of dipLODocus[RDF] to five other
well-known database systems: Postgres, AllegroGraph, BigOWLIM, Jena, Vir-
tuoso, and RDF 3X. We chose those systems to have different comparison points

10 http://www.tpc.org/



using well-known systems, and because they were all freely available on the Web.
We give a few details about each system below.

Postgres We used Postgres 8.4 with Redland RDF Library 1.0.13; Postgres
is a well-known relational database, but as the numbers below show, it is
not optimized for RDF storage. We couldn’t run our 100-universities on it
because its load time took more than one week. It also had huge difficulties
to cope with some of the queries for the 10-universities data set. Since the
time of query execution was particularly long for this system, we ran each
query five times only and simply report the best run below.

AllegroGraph We used AllegroGraph RDFStore 4.2.1 AllegroGraph unfortu-
nately poses some limits on the number of triples that can be stored for
the free edition, such that we couldnt load the big data set. It also showed
difficulty to deal with one query. For AllegroGraph, we prepared a SPARQL
Python script using libraries supported by the vendor.

BigOWLIM We used BigOWLIM 3.5.3436. OWLIM provides us with a java
application to run the LUBM benchmark, so we used it directly for our tests.

Jena We used Jena-2.6.4 and the TDB-0.8.10 storage component. We created
the database by using the “tdbloader” provided by Jena. We created a Java
application to run and measure the execution time of each query.

Virtuoso We used Virtuoso Open-Source Edition 6.1.3. Virtuoso supports
ODBC connections, and we prepared a Python script using the PyODBC
library for our queries.

RDF-3X We used RDF-3X 0.3.5. For this system, we converted our dataset
to NTriples/Turtle. We also hacked the system to measure the execution
time of the queries only, without taking into account the initialization of the
database and turning off the print-outs.

6.6 Results

Relative execution times for all queries and all systems are given below, in Fig-
ure 4 for 10 universities and in Figure 5 for 100 universities. Results are given as
runtime ratios, with dipLODocus[RDF] taken as a basis for ratio 1.0 (i.e., a bar
indicating 752.3 means that the execution time of that query on that system was
752.3 times slower than the dipLODocus[RDF] execution). Figure 6 gives relative
execution times for analytics executed on a selection of the fastest systems. Ab-
solute times with confidence intervals at 95%, database sizes on disk and load
times are given in Figures 7 for both datasets.

We observe that dipLODocus[RDF] is generally speaking very fast, both
for bulk inserts, for LUBM queries and especially for analytic queries.
dipLODocus[RDF] is not the fastest system for inserts, and produces slightly
larger databases on disk than some other systems (like RDF-3x), but performs
overall very-well for all queries. Our system is on average 30 times faster than
the fastest RDF data management system we have considered (i.e., RDF-3X)
for LUBM queries, and on average 350 times faster than the fastest system
(Virtuoso) on analytic queries. Is is also very scalable (both bulk insert and
query processing scale gracefully from 10 to 100 universities).
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dipLODocus[RDF]	   1	   1	   1	   1	   1	   1	   1	   1	   1	   1	   1	   1	   1	   1	  
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Fig. 4. Runtime ratios for the 10 universities data set

q1	   q2	   q3	   q4	   q5	   q6	   q7	   q8	   q9	   q10	   q11	   q12	   q13	   q14	  
BigOwlim	   3011.6	   46.7	   92.4	   3839.1	   163181.6	   12.5	   1012.5	   2343.1	   99999.0	   166.7	   196.7	   698.3	   196.2	   4.7	  
Jena	   75.1	   17.8	   31.8	   26.4	   58.1	   5.4	   119.1	   828.9	   99999.0	   71.4	   25.0	   128.5	   2.3	   4.2	  
virtuoso	   25.3	   37.9	   119.3	   34.9	   105.8	   109.9	   1.2	   599.4	   55.6	   5081.4	   3053.7	   4921.7	   51.8	   93.8	  
rdf3x	   35.3	   121.9	   21.3	   22.9	   22.5	   2.7	   19.7	   3.7	   11.6	   72.8	   39.1	   59.4	   2.0	   2.3	  
dipLODocus[RDF]	   1	   1	   1	   1	   1	   1	   1	   1	   1	   1	   1	   1	   1	   1	  
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Fig. 5. Runtime ratios for the 100 universities data set

a1	   a2	   a3	  
Jena	   925367.2	   21.7	   7.5	  
virtuoso	   649.2	   15.5	   38.7	  
rdf3x	   859.4	   252.4	   1.0	  
dipLODocus[RDF]	   1	   1	   1	  
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a1	   a2	   a3	  
Jena	   999999.0	   21.5	   4.7	  
virtuoso	   1403.9	   49.1	   43.4	  
rdf3x	   9589.7	   1788.1	   1.0	  
dipLODocus[RDF]	   1	   1	   1	  
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Fig. 6. Runtime ratios for 10 (left) and 100 (right) universities for the ana-
lytic/aggregate queries



dipLODocus AllegroGraphBigOwlim virtuoso rdf3x Jena dipLODocus BigOwlim virtuoso rdf3x Jena
q1 AVG 1.45E-05 1.09E-02 5.37E-02 1.29E-04 9.14E-04 1.20E-03 q1 AVG 1.73E-05 5.21E-02 4.38E-04 6.10E-04 1.30E-03

CI 6.47E-08 4.81E-05 6.27E-05 1.00E-06 2.23E-07 7.93E-06 CI 5.17E-08 5.35E-05 5.88E-07 3.53E-07 9.09E-06
q2 AVG 1.21E-02 1.14E+01 5.19E-01 4.96E-02 1.40E+00 2.19E-01 q2 AVG 1.27E-01 5.94E+00 4.83E+00 1.55E+01 2.27E+00

CI 5.63E-05 2.96E-03 9.04E-04 4.72E-05 1.85E-05 1.42E-04 CI 6.41E-05 3.79E-03 8.82E-04 1.52E-04 4.09E-04
q3 AVG 2.09E-05 3.78E-03 2.60E-03 1.10E-03 7.91E-04 1.10E-03 q3 AVG 3.14E-05 2.90E-03 3.75E-03 6.68E-04 1.00E-03

CI 9.57E-08 8.77E-06 1.32E-05 4.00E-06 1.11E-06 5.95E-06 CI 2.54E-08 1.07E-05 6.01E-07 1.56E-07 0.00E+00
q4 AVG 7.95E-05 4.62E+00 3.63E-02 1.82E-03 1.89E-03 2.20E-03 q4 AVG 8.33E-05 3.20E-01 2.91E-03 1.90E-03 2.20E-03

CI 3.17E-07 8.49E-04 1.18E-04 1.04E-06 2.22E-07 7.93E-06 CI 7.15E-08 5.44E-04 3.32E-06 1.29E-07 7.93E-06
q5 AVG 5.32E-05 4.74E+00 8.19E-01 2.08E-03 1.35E-03 2.90E-03 q5 AVG 5.34E-05 8.71E+00 5.65E-03 1.20E-03 3.10E-03

CI 2.56E-07 1.11E-03 2.89E-04 1.71E-05 3.89E-08 1.07E-05 CI 6.16E-08 2.28E-03 4.37E-06 1.61E-07 2.07E-05
q6 AVG 1.65E-02 1.40E+00 2.23E-01 6.22E-01 2.51E-02 5.52E-02 q6 AVG 1.42E-01 1.77E+00 1.56E+01 3.77E-01 7.61E-01

CI 8.65E-05 3.93E-04 8.00E-04 1.58E-03 8.81E-06 2.70E-04 CI 1.64E-05 1.15E-03 1.25E-02 5.24E-05 7.28E-03
q7 AVG 1.22E-03 7.03E+01 5.96E+00 1.55E-03 4.82E-03 7.14E-01 q7 AVG 2.63E-03 6.34E+01 3.11E-03 5.18E-02 7.46E+00

CI 3.21E-07 1.12E-02 2.18E-03 2.10E-06 5.04E-05 2.25E-04 CI 3.39E-05 1.55E-02 2.09E-06 9.53E-04 1.54E-03
q8 AVG 6.54E-03 5.09E+01 1.74E+00 5.47E-01 8.94E-03 5.43E-01 q8 AVG 6.34E-03 1.49E+01 3.80E+00 2.36E-02 5.26E+00

CI 2.21E-05 8.28E-03 7.10E-04 1.09E-03 1.57E-06 1.47E-03 CI 1.71E-06 3.93E-03 7.60E-04 6.69E-06 5.19E-03
q9 AVG 6.74E-02 longer than longer than 1.14E+00 1.83E-01 longer than q9 AVG 2.61E-01 longer than 1.45E+01 3.01E+00 longer than

CI 1.98E-06 two hours two hours 4.38E-03 9.06E-05 two hours CI 2.29E-05 two hours 1.92E-03 1.07E-03 two hours
q10 AVG 2.17E-05 4.80E+00 3.70E-03 8.93E-03 1.40E-03 1.00E-03 q10 AVG 1.68E-05 2.80E-03 8.54E-02 1.22E-03 1.20E-03

CI 7.32E-08 1.15E-03 9.09E-06 7.49E-06 1.80E-06 0.00E+00 CI 1.19E-08 7.93E-06 3.59E-06 1.49E-07 7.93E-06
q11 AVG 6.41E-05 6.04E-02 1.11E-02 2.54E-03 1.37E-03 1.60E-03 q11 AVG 6.00E-05 1.18E-02 1.83E-01 2.35E-03 1.50E-03

CI 2.32E-07 5.08E-04 5.95E-06 1.76E-05 3.25E-07 1.32E-05 CI 1.54E-08 7.93E-06 4.72E-05 7.76E-07 9.91E-06
q12 AVG 1.74E-05 8.81E-02 1.09E-02 2.14E-03 1.43E-03 2.10E-03 q12 AVG 1.79E-05 1.25E-02 8.81E-02 1.06E-03 2.30E-03

CI 5.19E-08 8.05E-05 5.95E-06 1.93E-06 2.70E-07 5.95E-06 CI 5.95E-09 3.68E-05 8.23E-05 1.06E-06 9.09E-06
q13 AVG 4.76E-05 2.85E-02 5.89E-02 3.82E-03 1.06E-03 1.00E-03 q13 AVG 5.62E-04 1.10E-01 2.91E-02 1.11E-03 1.30E-03

CI 1.18E-07 8.19E-05 5.71E-05 8.27E-07 7.82E-08 0.00E+00 CI 1.99E-08 2.39E-04 5.56E-05 1.01E-07 9.09E-06
q14 AVG 1.29E-02 1.17E+00 1.90E-01 5.37E-01 2.28E-02 3.62E-02 q14 AVG 1.41E-01 6.68E-01 1.33E+01 3.27E-01 5.98E-01

CI 6.00E-05 3.79E-04 2.17E-04 1.91E-03 9.93E-06 1.82E-04 CI 2.18E-06 1.21E-03 6.99E-03 1.30E-04 6.59E-03
a1 AVG 1.16E-03 not run not run 7.50E-01 9.93E-01 1.07E+03 a1 AVG 1.04E-02 not run 1.45E+01 9.93E+01 longer than

CI 2.24E-06 4.90E-04 3.90E-03 3.42E-02 CI 1.22E-07 6.52E-04 1.05E-03 two hours
a2 AVG 5.07E-05 not run not run 7.85E-04 1.28E-02 1.10E-03 a2 AVG 6.50E-05 not run 3.19E-03 1.16E-01 1.40E-03

CI 1.72E-07 4.62E-06 1.25E-05 5.95E-06 CI 1.54E-08 2.35E-06 1.21E-04 9.71E-06
a3 AVG 1.07E-02 not run not run 4.13E-01 1.10E-02 8.01E-02 a3 AVG 1.55E-01 not run 6.72E+00 1.49E-01 7.25E-01

CI 1.57E-07 2.30E-03 2.49E-06 7.00E-04 CI 2.65E-07 1.94E-03 3.61E-05 2.88E-03

dipLODocus AllegroGraphBigOwlim virtuoso rdf3x Jena dipLODocus BigOwlim virtuoso rdf3x Jena
Load Time 31s 13s 50s 88s 16s 98s 427s 748s 914s 214s 1146s

87MB 696MB 209MB 140MB 66MB 118MB 913MB 2012MB 772MB 694MB 1245MB

100 UNI -- Query Execution Time [s]

Load Time
size on disksize

10 UNI -- Query Execution Time [s]

Fig. 7. Absolute query execution and load times [s], plus size of the databases on disk
for both data sets

7 Conclusions

In this paper, we have described dipLODocus[RDF] , a new RDF management sys-
tem based on a hybrid storage model and RDF templates to execute various kinds
of queries very efficiently. In our performance evaluation, dipLODocus[RDF] is on
average 30 times faster than the fastest RDF data management system we have
considered (i.e., RDF-3X) on LUBM queries, and on average 350 times faster
than the fastest system we have considered on analytic queries. More impor-
tantly, dipLODocus[RDF] is the only system to consistently show low processing
times for all the queries we have considered (i.e., our system is the only system
being able to answer any of the queries we considered in less than one second),
thus making it an extremely versatile RDF management system capable of effi-
ciently supporting both short and long-tail queries in real deployments.

This impressive performance can be explained by several salient features
of our system, including: its extremely compact structures based on molecule
templates to store data, its redundant structures to optimize different types
of operations, its very efficient ways of coping with disk and memory reads
(avoiding seeks and memory jumps as much as possible since they are extremely
expensive on modern machines), and its way of materializing various joins in all
its data structures. This performance is counterbalanced by relatively complex
and expensive updates and inserts, which can however be optimized if considered
in bulk.



In the near future, we plan to work on cleaning, proof-testing, and extending
our code base to deliver an open-source release of our system as soon as possi-
ble11. We also have longer-term research plans for dipLODocus[RDF] ; our next
research efforts will revolve around parallelizing many of the operations in the
system, to take advantage of multi-core architectures on one hand, and large
cluster of commodity machines on the other hand. Also, we plan to work on the
automated database design problem in order to automatically suggest sets of
optimal root nodes to the database administrator given some sample input data
and an approximate query workload.
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