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Abstract. As Linked Open Data originates from various sources, lever-
aging well-defined ontologies aids integration. However, oftentimes the
utilization of RDF vocabularies by data publishers differs from the in-
tended application envisioned by ontology engineers. Especially in large-
scale datasets as presented in the Billion Triple Challenge a significant
divergence between vocabulary specification and usage patterns can be
observed. This may impede the goals of the Web of Data in terms of dis-
covering domain-specific information in the Semantic Web. In this work,
we identify common misusage patterns by employing frequency analysis
and rule mining and propose reengineering suggestions.

1 Introduction

The concept of Linked Open Data (LOD) enables information providers to create
and share linkable data across the Web. Besides the increasing number of LOD
sources, there also exist a number of rules for publishing Linked Data [2]. How-
ever, consuming and integrating LOD still necessitates thorough analysis and
study of the data sources, because individual data publishers may have differ-
ent understandings or knowledge of useful vocabulary definitions. Here, reusable
knowledge bases and ontologies facilitate understanding and integrating multi-
ple data sources. They provide metadata to define the domains and ranges of
properties of or taxonomical relationship between resources.

Nevertheless, there is a discrepancy between well-defined ontologies and the
principles of LOD. While ontologies try to comprise homogeneous data sources
and define their structure, LOD is meant to be flexible and independent of other
sources. Thus, integration of LOD data, ontology discovery and matching pose
major challenges for the pervasion of the Web of Data. While there do exist
best practices for how to publish Linked Data using common ontologies [5],
our analysis shows that due to various reasons certain misusage patterns occur
frequently. This partly stems from the fact that ontologies may either be too
specific or too generic. In addition, custom namespace-specific properties may
be added to an ontology concept when need arises. It is likely that at least
some of these properties are redundant, as data publishers are unaware of one
another’s additions.

Redesign of ontologies and their taxonomies requires analysis and mining
of the underlying data. For example, if we observe that for a large number



of instances of type http://xmlns.com/foaf/0.1/Agent, the assigned prop-
erty http://xmlns.com/foaf/0.1/gender is not set, one could conclude mis-
placement of this predicate and shift it to a more appropriate subclass, e.g.,
http://xmlns.com/foaf/0.1/Person. Addressing these quality issues of an on-
tology can be considered a form of schema analysis. Here, a schema defines the
set of predicates whose domain is a specific concept within the ontology base.

We use association rule mining for schema discovery and evaluate the mis-
match of extension and intension of the schemata inferred from the data against
defined specification of the ontologies. Mining both positive and negative rules
enables us to detect properties likely to appear in combination as well as exclu-
sive of one another. This in turn helps to evaluate which properties are indeed
appropriately declared for certain classes and which ones could instead be defined
for other (sub-)classes.

There have been case studies about the pervasiveness and usage of certain
RDF vocabularies, especially the “Friend of a Friend”1 (FOAF) ontology [3][4],
which are related to our work. However, we analyze a heterogenous large-scale
dataset utilizing various ontologies, we consider extensions to the original spec-
ifications, and we use a data mining approach to construct frequent itemsets
instead of focusing on individual properties or vocabularies only.

The rest of this paper is organized as follows: In Sec. 2 we introduce a de-
tailed problem statement. Section 3 illustrates the workflow of our approach to
evaluate the appropriateness of ontologies based on usage patterns. The results
in Sec. 4 indicate some exemplary findings in the BTC 2011 dataset before Sec. 5
concludes this paper and presents an outlook on future work. Please note that for
brevity and readability, we use a number of prefix abbreviations when presenting
RDF resources. These abbreviations are defined in Listing 3 in the Appendix.

2 Problem Statement

We identified two basic divergences of how the actual usage of RDF vocabularies
differs from their specification. Firstly, certain classes may be overspecified : A
number of properties are declared for a particular class, however they are are
rarely (if ever) used for real-world instances of this class. On the other hand, a
class may also be underspecified, when in real-world data certain properties are
used frequently even though they are not specified by the vocabulary.

To illustrate the problem, consider Listing 1. This listing shows an excerpt
of the http://dbpedia.org/ontology/Settlement class definition. If a geo-
location data provider decides to employ this specification for her data, she
might be confused about how to set proper values for some of the properties.
The properties in lines 2 and 3 are more or less intuitively applicable to all in-
stances of :Settlement2, whereas others seem only useful for a strict subset of
instances (such as :scottishName in line 4).

1 http://xmlns.com/foaf/spec/
2 For prefix abbreviations, please refer to Listing 3 in the Appendix.



1 : S e t t l ement rd f s : subC la s sO f : P l a c e .
2 :winterTemperature rd f s :domain :Se t t l ement .
3 :summerTemperature rd f s :domain :Se t t l ement .
4 : s cott i shName rdf s :domain :Se t t l ement .
5 :d istanceToEdinburgh rdf s :domain :Se t t l ement .

Listing 1: Specification of http://dbpedia.org/ontology/Settlement.

However, none of the properties of this class (or any of its parent classes
:PopulatedPlace, :Place, and http://www.w3.org/2002/07/owl#Thing)
model the latitude and longitude of a settlement although these two proper-
ties are set for many instances of class :Settlement in DBpedia, e.g., via the
dbprop:latitude and dbprop:longitude predicates, respectively. Overall, for a
more intuitive vocabulary definition it would be advantageous to introduce more
specific subclasses of :Settlement (e.g., :ScottishSettlement) and push down
rather ‘restricted’ properties (e.g., :scottishName) to them. Additionally, some
of the properties that are already set for a large number of the instances of
:Settlement (such as dbprop:latitude) can be included in the definition of
the class. A possible alternative is presented in Listing 2.

In general, over- or underspecification may cause confusion which ontology
and which classes therein to adopt when publishing RDF data. Using vocabular-
ies that are not intended for certain data or unwarranted extensions to existing
ontologies limits machine readability and thus impedes the benefits of Linked
Data. The goal of our work is to identify recurring misuse of ontologies and
suggest possible ways to overcome these problems by reengineering ontologies.

1 : S e t t l ement rd f s : subC la s sO f : P l a c e .
2 :winterTemperature rd f s :domain :Se t t l ement .
3 :summerTemperature rd f s :domain :Se t t l ement .
4 dbpprop : l a t i tude rd f s :domain :Se t t l ement .
5 dbpprop : long i tude rd f s :domain :Se t t l ement .
6 : S c o t t i s h S e t t l e m e n t rd f s : subC la s sO f :Se t t l ement .
7 : s cott i shName rdf s :domain : S c o t t i s h S e t t l e m e n t .
8 :d istanceToEdinburgh rdf s :domain : S c o t t i s h S e t t l e m e n t .

Listing 2: A possible overhaul of http://dbpedia.org/ontology/Settlement.

3 Ontology Verification

Our approach for evaluating the use of ontology structures in the real world
consists of four steps:

1. Extract typed concepts from the data (i.e., instances declaring rdf:type).
2. Retrieve relevant ontological information for all types found in the first step.
3. Perform data mining on all instances of each extracted relevant concept.
4. Compare the discovered usage patterns with class structures of the ontology.

For evaluating and comparing the usage patterns and the appropriateness of
ontologies in a given dataset we need to scan the data twice: First, we need to
discover which concept types have been used in the data and how the correspond-
ing classes are defined for these concepts. In the next scan, for each concept we



analyze what predicates (besides rdf:type) are used for instances of this type.
Finally, pattern analysis reveals frequent predicate patterns as well as positive
and negative association rules between predicates. These rules in turn can be
used to evaluate the appropriateness of ontology definitions in general and the
assignment of certain types to entities. In the following, we describe Steps 2, 3,
and 4 in more detail.

3.1 Ontology Retrieval

To retrieve the ontological specification of the approx. 200,000 discovered classes
in the BTC dataset, we combined two approaches: First, we extracted the speci-
fications for all types set by at least one instance from within the BTC data and
afterwards gathered missing type definitions by performing lookups on the URI
of each remaining class. Using the information available in the BTC data, we dis-
covered class definitions for 90.97% of all the instances in the BTC dataset. By
adding class definitions available online, this percentage was increased to 90.99%.

Judging from these numbers, a reasonable amount of TBox data is already
available in the BTC 2011 crawl, especially for common RDF classes. Further-
more, we discovered that many online lookups of the missing class definitions
resulted in HTTP 404 response codes. As pointed out in Sec. 1, this might be
caused by data publishers not employing suitable vocabularies and rather defin-
ing illegitimate ontological structures, in this case leading to unresolvable URIs.
Again, one solution to this problem might be providing more intuitive ontologies.

3.2 Predicate Analysis and Mining

Having identified the relevant concepts in the dataset, we evaluated the actual
usage of predicates associated with the instances of each class. Trivially, this
can be achieved by determining the frequency of each distinct predicate for the
instances within the dataset. The result of this analysis is the set of the most
frequent and therefore presumably relevant properties of a specific type.

A more general approach is to discover frequent sets of predicates. A frequent
set of predicates is a set of predicates that co-occur for a minimum number of in-
stances of a specific type. Similar to mining frequent itemsets from a transaction
database [1], this number is defined as minimum support s. A set of predicates
holds support s if s% of instances in the dataset involve all the predicates of this
set. Moreover, we can detect dependencies between frequent sets of predicates as
positive and negative association rules. A positive association rule X → Y states
that the predicates in Y depend on the predicates in X. The confidence conf of
such an association rule is the conditional probability P (Y |X). Denoting the sup-
port of a set X as supp(X), conf(X → Y ) is computed as supp(X∪Y )/supp(X).
Relevant rules are those that hold minimum confidence c.

A negative association rule of the form X → ¬Y denotes the conditional
probability of the absence of Y given X. Respectively, supp(X ∪ ¬Y ) denotes
how many instances from the dataset involve the predicates of X but no predicate
of Y . Negative associations between predicates might imply that these predicates



have alternating meanings and describe different categories of instances. Another
reason for predicates to occur exclusively from one another is that they may have
similar meanings, e.g., foaf:lastName and foaf:familyName.

3.3 Ontology Evaluation

In the last step, we compare the retrieved ontology definitions with the predicate
patterns extracted from the data. For each ontology class we analyze:

– Predicates that are part of the class definition but rarely used in the data.
– Predicates that occur significantly often for instances of the specific type but

are not included in the actual class (or superclass) definition.
– Dependencies between predicates that are defined for a certain class and

those that are not.

By these three analysis steps we are able to categorize the mismatch of on-
tology class definition and the existing data with regard to over- or underspecifi-
cation of the class definition as illustrated above. Overspecification occurs when
predicates are defined by the class definition but are only set in a small number
of instances. A special case of overspecification can be identified by means of
negative rules that partition the instances into two different clusters implying
that possibly two subclasses may be created, as will be exemplarily illustrated
in Sec. 4. We define underspecification as many frequent predicates occurring
in the dataset without being part of the class (or any superclass) definition.
Again, association rules and disjoint frequent sets of predicates might justify the
introduction of subclasses.

4 Results

In the BTC 2011 corpus we discovered 213,382 distinct type classes specified
by 441,461,669 individual instances (which can be of more than one type).
Of these instances, foaf:Person is the most common type, accounting for
362,590,928 typed entities. Additionally, we discovered around 150 properties
whose rdfs:domain is a foaf:Person, whereas the original specification de-
clares only 16 properties for this class.

For a first analysis of vocabulary usage, we extracted instances of several
common types and matched their properties with the ones of the original on-
tology specification. Table 1a lists examples of overspecification. Consider the
property foaf:plan: only one instances of a foaf:Person has a value set for
this predicate in the entire BTC 2011 dataset. Some of the specified properties
of mo:MusicArtist are never used at all (e.g., mo:activity start).

On the other hand, Tab. 1b lists several properties that are commonly used
for foaf:Person, but are not specified in the ontology for various reasons. These
reasons include undefined attributes (e.g., foaf:member name) or general mis-
usage (e.g., foaf:image). For the other classes in Tab. 1b, we detected differ-
ent properties that were declared and used in the context of several large-scale
datasets and thus have an overall high frequency among instances of these types.



Resource #instances

foaf:Agent 310,529
• foaf:yahooChatID 0
• foaf:tipjar 0

foaf:Person 362,590,928
• foaf:geekcode 7
• foaf:plan 1

mo:MusicArtist 310,529
• mo:activity end 0
• mo:activity start 0

(a) Examples for Overspecification.

Resource #instances

foaf:Person 362,590,928
• foaf:member name 19,083,000
• foaf:tagLine 19,062,451
• foaf:image 18,033,515

foaf:OnlineAccount 2,938,416
• sioc:account of 2,411,233
• sioc:follows 1,484,445

mo:MusicArtist 310,529
• openvocab:sortLabel 108,073

(b) Examples for Underspecification.

Table 1: Over- and underspecification of common types in the BTC 2011 dataset.

Next, we mined association rules on instances of some of the common types
to detect patterns that support the categorization of the class definition and
data mismatch. Table 2 shows some interesting rules with confidence ≥ 90%
among predicates that occur for the instances of the types mo:MusicArtist

and foaf:Person. Here, a strong dependency between several predicates defined
for a foaf:Person can be observed. For mo:MusicArtist, predicates of the
original ontology (e.g., mo:remixed) are also used frequently in combination with
predicates from other namespaces (e.g., http://vocab.org/bio/0.1/#event).

foaf:Person

foaf:image → foaf:nick

foaf:gender → foaf:weblog

foaf:weblog → foaf:member name

mo:MusicArtist

mo:image → foaf:depiction

http://purl.org/dc/terms/description → foaf:homepage

mo:remixed → http://vocab.org/bio/0.1/#event

(foaf:name, foaf:page, mo:member of) → mo:musicbrainz

Table 2: Association rule examples with c ≥ 90% and s ≥ 0.2%

Table 3 illustrates some negative rules with c ≥ 90% that we extracted
from the same data. The first rule for mo:MusicArtist shows an obvious hint
for establishing two disjoint classes for instrumental artists and vocalists. Both
predicates belong to the same ontology source and do not have contradicting
meanings, but in the BTC data the set of vocalists and the set of instrumental-
ists are nearly disjunct. The negative association rule between foaf:homepage,
mo:myspace, and foaf:page might imply that different data publishers use dif-
ferent properties for describing the same resource (i.e., an artist’s web page).
Looking at the rule examples for foaf:Person, one can recognize that most neg-
ative associations are between synonyms or similar resources such as foaf:name
and foaf:nick, foaf:homepage and foaf:weblog, or foaf:image and foaf:img

(as pointed out earlier, foaf:image is misused as a predicate very often). We
discovered many negative association rules between predicates from different
namespaces, although the associated instances are of the same type.

As mentioned earlier, we consider the crawl of the Billion Triple Challenge
a unique snapshot of the Web of Data. Therefore, in contrast to individual



foaf:Person

foaf:weblog → ¬ foaf:homepage

foaf:image → ¬ foaf:img

foaf:name → ¬(foaf:nick, foaf:gender)

mo:MusicArtist

mb:isInstrumentalArtistOf → ¬ mb:isVocalistOf

foaf:page → ¬ (foaf:homepage, mo:myspace)

Table 3: Negative rule examples with c ≥ 90% and s ≥ 0.2%

data sources, the rules outlined above give some indication about a broad
misconception of certain ontological structures. Instead of single data publish-
ers misusing defined vocabularies, this might hint at a required design over-
haul of these vocabularies. For more results of our experiments, please visit
http://www.hpi.uni-potsdam.de/naumann/projects/btc/btc2011.html.

5 Conclusions and Future Work

In this work, we presented an approach to evaluate the utilization of several
widely used ontologies based on the usage patterns presented in the Billion Triple
Challenge 2011 dataset. We identified two misconceptions of the vocabulary
definition in terms of its application: over- and underspecification. As illustrated
in Sec. 4, there are mismatches between the intentions of certain well-known
ontology specifications and how they are employed. Reasons for this may include

– illegitimate usage of the vocabulary by data publishers (e.g., because of a
lack of knowledge of specification details),

– the ontology has evolved over time and needs to be reengineered as class
definitions are hardly suitable for current real-world data, and

– general design flaws in the vocabulary, including term ambiguity or confusing
schema definitions.

We leave open for future work an automated approach to propose reengineer-
ing steps for vocabularies based on the observed usage patterns. Additionally,
we want to further the proper usage of ontologies by aiding data publishers in
selecting the correct attributes and class definitions when preparing their data.
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Appendix: Evaluation Criteria we have met

The BTC crawl provides a unique snapshot of the Linked Data universe. Among
other aspects, it reflects how well-established ontologies are used by data providers
to publish their data and how this usage differs from the intended application.
Consequently, this knowledge may prove beneficial for ontology engineers to re-
vise and alter the vocabularies provided.

In our work, we exploited the large-scale dataset to gain insight into how
intuitive these ontologies are by comparing their specification with actual usage
patterns. For this, we examined all 441,461,669 instances with type information
in the BTC dataset. We were able to discover ontological specifications for almost
all instances (90.99%) by either extracting it directly from the BTC data or
looking it up online.

The techniques for contrasting type specification with actual utilization in-
troduced in this paper are not only applicable to the Billion Triple Challenge
2011 dataset, but all large-scale RDF datasets. In particular, this approach is
best suited for heterogenous data where the employed vocabularies are applied
beyond the datasets they were originally designed for.

We believe that by continuously applying the concepts introduced in this
work to large-scale snapshots of the Web of Data as presented in the Billion Triple
Challenge and monitoring the results, over time the quality of ontologies can be
improved (in terms of how intuitive these vocabularies are). As the problem of
usage pattern analysis is equivalent to classical frequency analysis in transaction
databases, rule mining approaches are well-suited. The employed algorithms also
benefit from the fact that the total number of items (i.e., predicates) is much
smaller than in the original use case.

We present additional results and resources regarding this submission
at http://www.hpi.uni-potsdam.de/naumann/projects/btc/btc2011.html.
For some of our analysis and experiments, we employed a distributed open-
source RDF store developed in our group named HDRS3. The store uses the
Apache Hadoop framework4 to store RDF data in a distributed environment
while providing means to efficiently query the available information.

@pref ix : <h t t p : // dbpedia . org / onto logy /> .
@pre f ix r d f s : <h t t p : //www. w3 . org /2000/01/ rdf−schema\#> .
@pre f ix dbpprop : <h t t p : // dbpedia . org / property /> .
@pre f ix r d f : <h t t p : //www. w3 . org /1999/02/22− rdf−syntax−ns\#> .
@pre f ix f o a f : <h t t p : //xmlns . com/ f o a f /0 .1/> .
@pre f ix mo: <h t tp : // pur l . org / onto logy /mo/> .
@pre f ix s i o c : <h t t p : // r d f s . org / s i o c /ns\#> .
@pre f ix openvocab: <h t tp : //open . vocab . org / terms /> .
@pre f ix mb: <h t tp : // dbtune . org / musicbra inz / r e sou r c e /vocab/> .

Listing 3: RDF prefix abbreviations used in this document.

3 http://code.google.com/p/hdrs/
4 http://hadoop.apache.org/


