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Abstract. We present CAREY, an alert system notification for regions
in state of emergency. CAREY implements the mediator-wrapper archi-
tecture on top of the Geospatial Web to visualize risky regions in terms of
their weather conditions. We illustrate the formalization of the problem
of detecting risky regions as a two-fold problem that relies on annota-
tions of sensor data with the ontology of Observations and Measurements
(O&M) to enhance state-of-the-art data mining and ranking techniques.
First, sensor observations are clustered according to their Geospatial in-
formation then, proximate regions are clustered into micro-climate areas
in terms of the similarity of their weather conditions. Finally, Top-k
Skyline techniques are used to identify the top-k areas that best meet
criteria of risk among the areas that are incomparable with respect to
this condition. We demonstrate the capabilities of CAREY.

1 Introduction

Rapid changes in the world climate possibly produced by greenhouse gas emis-
sions, are perturbing the livelihoods of large populations and firing extreme
events that may cause high numbers of casualties. Event notification systems
that provide a push-based discovery of areas that are more likely to have a dis-
aster, may help government agencies to rapidly assist affected people. To achieve
this goal, we developed CAREY, a ClimAtological contRol of regions in state
of EmergencY tool, to identify regions that best meet a weather risk condition.
CAREY is tailored to constantly receive sensor observations of weather condi-
tions which are represented as RDF properties; the ontology O&M-OWL is used
to describe the semantics of the observations. Sensor observations are grouped
according to their Geospatial information; micro-climate areas are created from
proximate regions by clustering them in terms of the similarity of their weather
conditions. Clustering techniques [2, 3] are enhanced with the semantics encoded
in the O&M-OWL ontology to exploit the meaning of the observations values
during the clustering process. Then, micro-climate areas are ranked to identify
the ones that are possibly in risk. A risk condition is modeled as a set of thresh-
olds on the values of the sensor data; for example, a risk condition may establish
that a region could be in risk when the values of humidity are at least 90% and



the temperature is at least 100° F'. Skyline and top-k ranking techniques are used
to identify the top-k critical regions with respect to a risk condition.

We demonstrate the benefits of the approach and show the following key
issues: the discovery capability of the two-fold approach by modeling a real-world
domain, and the scalability by demonstrating how CAREY is able to identify
the most risky regions in a large space of observations. The demo is published
at http://maribelacosta.com/carey/.

2 CAREY Architecture

CAREY is built on top of the Geospatial Web which comprises sensor data
annotated with the O&M-OWL ontology and is accessible through a federation of
Semantic Sensor Services. CAREY is based on the architecture of wrappers and
mediators [4], and integrates data exported by the services (Figure 1). CAREY
receives a risk condition that establishes the risk thresholds for each of the sensor
observation parameters and the number of risk regions that can be assisted; the
answer of a request is the top-k critical regions that best meet the risk condition.
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Fig. 1. The CAREY Architecture

ANAPSID [1] query engine is used to recover data from services and integrate
all the observations in a unified format. Wrappers are created around Semantic
Sensor Services to properly build the service URL and convert the results in
appropriate formats. Mediators maintain information and statistics about the
Web services. The following two components process the integrated sensor data:

Clustering: is an out-of-shell component implemented by WEKA, ! that
groups sensor data into clusters in two steps. First, geospatial information is
considered to compute proximate regions; altitude, sea level, and geospatial co-
ordinates are taken into account in this step. Then, sensor observations are used
to cluster the regions based on the similarity of their weather conditions. These

! nttp://www.cs.waikato.ac.nz/ml/weka/



clusters correspond to micro-climate areas or zones that characterize a particular
climate that is considerable different from the climate of the surrounding areas.
Micro-climate areas are common in regions with high elevations as the ones in the
Andes Mountains, where each region can have itself a particular climate, which
may vary several times in a day. Clusters represent micro-climate areas and their
centroids correspond to a vector of the mean values of the sensor observations.
The observations in a micro-climate area are similar, i.e., their sum of squares
to the cluster centroid is minimal. Different cluster algorithms are used to cre-
ate the micro-climate areas, e.g., X-means [3]. O&M-OWL annotations are used
to determine distances to the centroids, e.g., the condition of closeness of two
temperatures depends on the unit of the measurements: Celsius or Fahrenheit.
Micro-climate regions are computed independently of the risk condition.

Ranking: this component implements ranking techniques to identify the
top-k regions that best meet a risk condition among the non-dominated regions.
Non-dominated regions are micro-climate areas with at least one observation
value in the centroid, that is better than the same observation parameter of the
centroids of the other areas. These areas have also at least one parameter in
the centroid whose value is worse or equal than the value of this parameter in
the centroids of the other non-dominated areas. Furthermore, a region is top-k,
if it is among the k regions with the smallest distance to the risk condition.
Information encoded in the O&M-OWL ontology is also used to determine the
distance of an observation to the risk condition.

3 Demonstration of Use Cases

Consider a network of weather stations located all around Venezuela; each station
measures variables such as temperature, rainfall, etc. Sensor data is used to
determine regions with micro-climates, i.e., zones where their weather conditions
considerably differ from nearby areas. Suppose some government disaster control
agencies are interested in determing regions in state of emergency in terms of
how close their measurements are to a risk condition. Suppose only temperature
and rainfall are considered, which are both equally important. Further, assume
that a region is in risk, if its temperature is less than 10°F and its rainfall is
equal or greater than 50mm in a day. Thus, a region will be more risky, if there is
no other region with a lower temperature and a higher rainfall among the regions
with temperature less than 10°F and rainfall equal or greater than 50mm. Note
that to compare two observations, the type of the parameters and the units of
measurements encoded in the O&M ontology need to be considered.

Formally, a set of more risky micro-climate regions is comprised of regions
that are non-dominated by any other region in terms of the former criteria; this
set of regions is called Skyline. A region A dominates a region B, if B has greater
value in temperature and less in rainfall than A. Based on this, regions 1, 2, 3,
and 4 of Table in Figure 2(a) are the non-dominated ones. Finally, to attend the
top-3 most critical regions, distances between the temperature and rainfall of the
regions to the risk conditions are considered. Table in Figure 2(a) illustrates the



Euclidean distance values. These values are used as scores to identify that regions
4, 2 and 3 are the ones that have rainfall and temperature measurements that
best meet the risk condition. Figure 2(b) illustrates the top-3 critical regions.

Sensor Observations
Region|Rainfall| Temperature|Euclidean Distance e . 2
1 99 84 49.02 b B B
2 90.2 6 40.67 X
3 95 6.6 4512 (b) The Top-3 Criti-
4 87 1.6 37.94 cal Regions of Weather
(a) Euclidean Distance to the Risk Condition Stations

Fig. 2. Risky Micro-climate Areas

We will demonstrate four scenarios with sensor data from Venezuela stations;
data was provided by WeatherUnderground 2 circa March 2010, Dec 2010, Feb
2011, and June 2011. Geospatial information and sensor observations such as
temperature, dew point, sea level pressure, and relative humidity are used to
identify micro-climate areas. Four risk conditions will be illustrated as well as
the benefits of using semantics encoded in the O&M-OWL ontology.

4 Conclusions

We present a two-fold approach to identify the top-k critical regions that best
meet a risk condition. Regions correspond to cluster of weather stations with sim-
ilar sensor observations and geospatial information. Critical regions are modeled
as Skyline points while the top-k most critical correspond to the Top-k Skyline
regions with respect to a risk condition. We will demonstrate the capabilities of
the clustering and ranking techniques implemented in CAREY.
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