
Conservative Repurposing of RDF Data

Audun Stolpe and Martin G. Skjæveland

Department of Informatics, University of Oslo
{audus,martige}@ifi.uio.no

1 Introduction

The data oriented Web presents us with the challenge of assessing and ensuring
the integrity of data across repeated cycles of reuse. Authoritative sources of
information on the Web need to take steps to ensure that the primary nature
of its information is maintained by consumers. The present paper is concerned
with one aspect of this problem, namely the question of when we are licensed to
say that data is being transformed, reused or merged in a non-distortive manner.
We shall place this problem in the context of RDF and Linked Data and study
the problem in relation SPARQL construct queries.

Example 1. The Cultural Heritage Management Office in Oslo maintains a list
of architecturally and culturally valuable buildings known as the Yellow List.
Expressed in SPARQL, part of the structure of the list is given by the WHERE
block in the query below; prefixes are assumed set. Note that there is no explicit
representation of city or country, and no grouping of related information in the
dataset. Suppose we wish to add structure to the dataset by typing subjects
as protected buildings, and grouping similar data around typed nodes. This is
illustrated by the CONSTRUCT block below:

CONSTRUCT { ?x a ?type , mat:ProtectedBuilding ;

vcard:adr [a vcard:Address ;

vcard:street-address ?st ; vcard:postal-code ?c ;

vcard:locality "Oslo" ; vcard:country-name "Norway"@en] ;

vcard:geo [a vcard:Location ;

vcard:latitude ?lat ; vcard:longitude ?long] }

WHERE { ?x a ?type ;

cul:street ?st ; cul:code ?c ;

geo:lat ?lat ; geo:long ?long }

This query changes the very structure of the source, however, there is still
a principled relationship between the source and target graphs. For instance
the property cul:street morphs into the sequence of properties vcard:adr,
vcard:street-address. Indeed, the transformation can easily be seen to be
systematic in the sense that all pairs related in the same manner in the source
graph are transformed uniformly in terms of the same structural element in
the target graph. It is also non-distortive in the sense that no other pair of re-
sources are so related. Contrast with the case in which we replace cul:code with
vcard:locality instead of vcard:postal-code, whilst keeping everything else

as-is. We would then not be able to distinguish between cities and zip-codes in
the repurposed graph, and would in that sense have altered the structure of the
information. There is therefore warrant for saying that this particular construct
query transforms the original graph in a conservative manner. In the following we
propose a general criterion to sort (what may reasonably be considered) conser-
vative from non-conservative ways of repurposing data. Since we take construct
queries as the paradigm of RDF repurposing, this means sorting conservative
from non-conservative construct queries. We shall do so first for triple to triple
transformation and then sketch similar results for more complex chain to chain
mappings.

2 Degrees of Conservativeness

We assume the reader is familiar with RDF and SPARQL syntax and semantics,
and introduce only a required minimum of notation. Details can be found in
[1, 2]. An RDF graph G is a set of triples, and LG denotes its set of resources
taken from U , the universe of all resources. We shall refer to predicates as edges,
and subject and objects indiscriminately as vertices. Note that a resource may
be both an edge and a vertex in the same graph. As regards queries, we shall
consider only the select-project-join fragment of SPARQL. A select query is a
pair 〈S,x〉, where S is a graph pattern and x a subset of variables in S. We use
〈S,x〉 (G) to denote the answer to the query over a graph G. A construct query
is a pair 〈C, S〉, where C is a template and S a graph pattern containing all
variables occurring in C. The answer to a construct query 〈C, S〉 over an RDF
graph G is written 〈C, S〉 (G).

We now turn to the problem of analysing the notion of a conservative con-
struct query. The analysis in this section is limited to the simple case in which
a SPARQL construct query transforms RDF triples to RDF triples. Let G be
any RDF graph. As a tentative characterisation, we may say that a construct
query is conservative if applied to G it evaluates to a graph that conservatively
transforms the subgraph of G that matches the pattern in the SELECT clause.
Obviously, this pushes the question back to what it means for an RDF graph
to be a conservative transformation of another. We shall take the existence of a
p-map from one to the other to provide an adequate criterion:

Definition 1. Let G and H be RDF graphs. An RDF homomorphism from G to
H is a function from LG to LH such that if 〈a, p, b〉 ∈ G, then 〈h(a), h(p), h(b)〉 ∈
H. A function h is a p-map from G to H if it is an RDF homomorphism from
G to H and h(a) = a for all vertices a of G.

As homomorphisms, p-maps reflect the structure of the source in the target. A
simple consequence of this is that queries over the source can be translated to
queries over the target without loss of tuples in the result set. Thus, the existence
of a p-map between the source and the target graph may be taken to account
for systematicity of a construct query. It does not account for non-distortiveness
however, for which we also need to reflect the structure of the result back into the

source. We shall consider three ways of doing that, represented by the following
bounds on p-maps h : G −→ H:

Strong: 〈a, h(p), b〉 ∈ H ⇒ 〈a, p, b〉 ∈ G (p1)

Liberal: 〈a, h(p), h(b)〉 ∈ H or 〈h(a), h(p), b〉 ∈ H ⇒ 〈a, p, b〉 ∈ G (p2)

Weak: 〈h(a), h(p), h(b)〉 ∈ H ⇒ 〈a, p, b〉 ∈ G (p3)

Theorem 1. If 〈S,x〉 (G) 6= ∅, S contains no variables as edges and h is a
p-map h : G −→ H bounded by (p1), then 〈S,x〉 (G) = 〈h(S),x〉 (H)

Theorem 1 shows that strong boundedness induces a transformation between
RDF graphs that is exact in the sense that the diagram in Fig. 1 commutes:

Theorem 2. Let h be any function on resources. If for all patterns S we have
〈S,x〉 (G) = 〈h(S),x〉 (H), then h is a strongly bounded p-map from G to H.

G 2U
n

H

Q

h
h(Q)

Figure 1.

The class of strongly bounded p-maps thus completely
characterises the pairs of graphs for which there is an exact
triple-to-triple translation of select queries from one to the
other. Note that exactness here does not mean that the
source and target are isomorphic. The target may contain
more information in the form of triples, as long as these
triples do not have source edges that map to them. Char-
acterisation results similar to Theorems 1 and 2 may be
had for liberal and weak boundedness as well:

Theorem 3. Let h be any function from U to itself and suppose 〈S,x〉 (G) 6= ∅,
where S contains no variables as edges. Then, a ∈ 〈h(S),x〉 (H) \ 〈S,x〉 (G)
implies a /∈ LG for any a ∈ a iff h is a p-map from G −→ H that satisfies (p2).
Moreover, a ∈ 〈h(S),x〉 (H) \ 〈S,x〉 (G) implies a /∈ LG for some a ∈ a iff h is
a p-map from G −→ H that satisfies (p3).

By way of intuitive motivation, strongly bounded p-maps do not allow “new”
vertices—i.e. vertices that do not occur in the source—in the target to be related
in the same way as source vertices in the target are, thus clearly separating old
and new. Liberal p-maps do allow such information in the target, but only if it is
exclusively about new vertices. Finally, weak p-maps allow new and old vertices
to be related by mapped edges, but old vertices may not be related in new ways.
A composition of two bounded p-maps preserves the weakest bound, implying
that p-maps counteract cumulative error in iterated data repurposing.

SPARQL graph patterns and templates may be considered as RDF graphs
in their own right, and the notion of a p-map may be extended accordingly by
including variables in the domain and letting the p-map be the identity on those
variables. This allows us to prove the following result:

Theorem 4. Let 〈C, S〉 be a construct query, where C contains no variables as
edges. If h is a p-map from S to C which is bounded by one of (p1)–(p3), then
h is a p-map under the same bound from 〈S, S〉 (G) to 〈C, S〉 (G).

Thus, if there is a bounded p-map from the WHERE block to the CONSTRUCT block
in a construct query, then any subgraph that matches the former can be p-
mapped with the same bound into the result of the query. By the properties of
bounded p-maps, therefore, we are licensed to say that the construct query is a
conservative transformation.

3 Generalizing the Conservativeness Criterion

The concept of a p-map may be put to more creative use and expanded to con-
strain chain-to-chain transformations, no longer requiring that pairs of vertices
be consistently and non-distortively related by triples—only that they be so re-
lated by chains of triples. We call such a transformation a c-map. Space allows
us only to outline its constructions and results.

cG(G↑) cH(H↑)

G↑ H↑

h

cG cH

f

Let G↑ denote the composition of an RDF graph G,
that is, G↑ contains a triple representative for every
chain of triples in G such that G ⊆ G↑ and there
is a injective composition function cG which takes a
chain in G to its representative in G↑. It can be shown
that a c-map f from G↑ to H↑ is constrained, which is the equivalent of strong
boundedness for chains, if and only if a given p-map from cG(G↑) to cH(H↑),
constructed from f , cG and cH , is strongly bounded. This ables us repeat the
results of Theorem 4 for the generalized conservativeness criterion, and to show
that the transformation in Example 1 is indeed conservative.

4 Concluding Remarks

Preliminary research into computational properties reveals that there is a poly-
nomial algorithm for identifying p-maps between two graphs. For c-maps the
situation is more complex, since the composition of a graph may be exponen-
tially larger than the graph itself. Yet, this is not a problem for any realistically
sized construct query. The theory has been implemented in the Web application
Mapper Dan at http://sws.ifi.uio.no/MapperDan/. Mapper Dan takes two
RDF graphs or a construct query as input, lets the user specify which bounds to
apply, and checks whether there is a corresponding map between the two graphs.
This map can then be used to translate the source RDF data to the target vo-
cabulary, produce a construct query which reflects the map, or to rewrite other
SPARQL queries.

References

1. Marcelo Arenas, Claudio Gutierrez and Jorge Pérez. ‘Foundations of RDF
Databases’. In: Reasoning Web. Ed. by Sergio Tessaris et al. Vol. 5689. Lec-
ture Notes in Computer Science. Springer, 2009, pp. 158–204.

2. Jorge Pérez, Marcelo Arenas and Claudio Gutierrez. Semantics of SPARQL.
Tech. rep. TR/DCC-2006-17. Universidad de Chile, 2006.

http://sws.ifi.uio.no/MapperDan/

	Conservative Repurposing of RDF Data

