
Three ways to sprinkle POWDER

Stasinos Konstantopoulos

Institute of Informatics and Telecommunications, NCSR ‘Demokritos’, Greece
konstant@iit.demokritos.gr

Abstract. In this paper, three alternative implementations of the POW-
DER W3C Recommendation are presented, compared, and discussed.
The main issue with implementing POWDER is that POWDER infer-
ence accesses resources’ URIs in order to mass-annotate regular expression-
delineated groupings of URIs.

1 Introduction

The Protocol for Web Description Resources (POWDER) is a W3C Recommen-
dation primarily meant as a format for publishing metadata taking advantage
of natural groupings of URIs.1 As an example, consider the following data:

<http://nasa.dataincubator.org/spacecraft/1969-059A>

rdf:type <http://purl.org/net/schemas/space/Spacecraft> .

<http://nasa.dataincubator.org/spacecraft/1969-099B>

rdf:type <http://purl.org/net/schemas/space/Spacecraft> .

POWDER can be used to formally state what is already obvious to a human:
that URIs from the nasa.dataincubator.org domain that have a path be-
ginning with spacecraft denote instances of the Spacecraft class. POWDER
documents are XML documents made up of Description Resources (DR), where
each DR assigns one or more properties to all resources denoted by the URIs
within a regular expression-delineated sub-space of the URI space:

<dr>

<iriset>

<includeregex>.*//nasa.dataincubator.org/spacecraft/.*</includeregex>

</iriset>

<descriptorset>

<typeof src="http://purl.org/net/schemas/space/Spacecraft"/>

</descriptorset>

</dr>

For the sake of brevity and clarity, only aspects relevant to the current dis-
course are presented, but it is worth noting that POWDER documents carry
provenance information; that individual DRs can be combined in more com-
plex structures and refer to DRs in other POWDER documents; and that the
basic regular expression-based schema can be extended by defining more human-
friendly iriset elements, such as includehosts and includepathstartswith,
that can be gleaned into regular expression elements.

1 See http://www.w3.org/2007/powder for more details.



2 Implementing POWDER

POWDER documents can be processed either directly as XML of by transform-
ing into equivalent OWL/RDF documents. Either way, POWDER semantics
provides the safeguard that having a matching URI is the only way to be as-
signed a property via POWDER, thus allowing for layered inference approaches
where a POWDER layer is deployed under the semantic inference layer without
the need for pushing semantic inference results back to the POWDER layer.

Here, three alternatives are explored:2 via OWL inference, at the level of the
triple store, and as combined POWDER/RDFS inference.

2.1 Implementing POWDER model theory

The formal semantics of POWDER uses an extension of RDF semantics that
defines the matchesregex property that relates resources with regular expression
strings such that the normalized string encoding of resource’s URI matches the
regular expression. Our spacecraft example is, then, equivalent to:

[ rdf:type owl:Restriction ;

owl:hasValue ".*//nasa.dataincubator.org/spacecraft/.*"^^xsd:string ;

owl:onProperty <http://www.w3.org/2007/05/powder-s#wdrs:matchesregex>

] rdfs:subClassOf <http://purl.org/net/schemas/space/Spacecraft> .

The most straightforward approach is to transform POWDER documents
into their OWL/RDF equivalent, make all applicable matchesregex assertions,
and then use OWL inference. This is the approach taken by SemPP, one of the
reference implementations produced by the POWDER Working Group. SemPP
is implemented within the Jena framework by extending the Jena OntModel with
one that intercepts ensures that all appropriate matchesregex assertions are in
the model. The extended OntModel is used as the explicit triple back-end for the
InfModel implementation provided by the Pellet OWL reasoner.

Alternatively to implementing the matchesregex extension, one can imple-
ment an XML-based processor at the triple store, making POWDER-inferred
statements appear as explicit triples to any inference stacked above it. In our
implementation, we took advantage of the OpenRDF Sesame framework’s ar-
chitecture of ‘stackable’ layers that infer implicit RDF triples from the (explicit
or implicit) data they receive from the layer immediately below. In this frame-
work, a POWDER processor has been implemented as a layer stacked between
the RDF store and semantic inference. This allows any inference engine to be
deployed without modifications.

Querying is handled by manipulating the queries coming from above before
being submitted to the RDF store below: triple patterns involving POWDER-
assigned properties are first ignored (to accept any resource as having these
properties) and the results are subsequently filtered so that only those bindings
that are either explicit in the RDF store or satisfy the URI restrictions specified
in the POWDER document are retained.
2 All implementations are available from http://powder.sourceforge.net



2.2 Implementing POWDER proof theory

Looking at POWDER from another perspective, it is, effectively, a form of in-
ference, not radically unlike semantic inference, except that the premises are the
URI restrictions expressed in <iriset>s and the consequents are the properties
expressed in <descriptorset>s.

Pursuing this angle, POWDER extends the proof-theoretic RDF and RDFS
semantics rather than the model-theoretic semantics used in the two implemen-
tations above. The extension amounts, then, to augmenting the rules of RDFS
inference by a rule that infers triples based on URIs matching regular expres-
sions. This proof-theoretic extension was implemented by modifying the forward-
chaining RDFS inference engine bundled in the Sesame distribution and using
that instead of standard RDFS inference.

3 Results and Conclusions

3.1 Large-scale repositories

Many applications, especially large-scale RDF stores, regard efficiency as more
important than expressivity of reasoning, use RDFS to define a relatively simple
data schema, and operate over volumes of triples that make OWL reasoning un-
realistic. In such applications, POWDER can be used as a means of compression
and optimization by exploiting URI regularities to compress the explicit data.

The POWDER-S implementation cannot be used in such applications, be-
cause (a) asserting one statement for each URI × regular expression will make
the repository bigger than if POWDER was not used; and (b) it introduces a
dependency on OWL reasoning that could be avoided. We evaluated the other
two implementations on the repository of the sync3 system that analyses news
crawled from the web, extracts named entities, events, and the sentiment ex-
pressed in the news item with respect to events.3

Naturally, the amount of triples saved by using POWDER to mass-annotate
resources depends on the application and the density of the POWDER-inferred
statements. In sync3, there are several rdf:type assertions that cannot be
semantically inferred but can be very naturally expressed in POWDER, given
good URI design. For example, some of the types of named entities recognized
in the content as participants in events (persons, organizations, etc.) cannot be
semantically differentiated, but the distinction between these sub-types of event
participants is necessary for the application.

In this domain, compression initially fluctuates but converges to roughly 20%
over longer periods of time. Furthermore, queries involving a mixture of POW-
DER and non-POWDER triple patterns execute faster, since fewer triples are
retrieved from the physical data store, especially when retrieving larger volumes

3 Earlier results regarding the implementation of Sect. 2.1 have been presented by
the author at the Intl WS on Semantic Web Information Management, ACM SIG-
MOD/PODS 2011, Athens, 12 June 2011.



Table 1. Querying time for repositories holding 38Mtriples of SYNC3 data. The
‘vanilla’ repository stacks the Sesame RDFS reasoner over the Sesame NativeStore.

Tuples Time (in seconds)
retrieved Vanilla RDFS/P POWDER

538 32 13 32
706 22 14 19

2233 109 106 86
3418 117 114 96

of data compensating for the overhead of the POWDER layer. Comparing query
rewriting with RDFS/P reasoning, the former approach is more efficient for
larger queries, although is introduces more overhead, as it avoids asserting (either
in the persistent store or in any in-memory structures used at query/inference
time) the POWDER-inferred triples (Table 1).

3.2 The case for POWDER-S

POWDER is also used in the WAC Open Collaboration Platform to serve RDF
annotations on applications’ suitability for mobile devices and their security and
privacy specifications.4 Although the WAC specification does not dictate the
use of POWDER-S, using the POWDER-S representation with OWL inference
would have been a viable solution: in such contexts, data volumes are not such
that scalability is an issue, but the qualitative information that TBox reasoning
can offer is essential.

Applications such as WAC, access authorization for pay sites, trust-marking
of websites by third-party authorities (e.g., as child-safe or not), etc. can use
POWDER-S to support the annotation process by identifying inconsistencies
between complex DRs overlapping in scope and possibly authored by different
organizations.

3.3 Conclusion

We presented and compared three alternatives for implementing the POWDER
Recommendation, outlining different applications where each is appropriate.

A promising future direction is optimizing RDF store indexes for using POW-
DER by, e.g., indexing URI fragments so that URIs matching regular expressions
can be retrieved. Another interesting direction would be to investigate a com-
bining POWDER with more expressive forms of reasoning, such as backward-
chaining reasoning for OWL 2 RL.

Acknowledgement: I gratefully acknowledge the support of the European FP7-
ICT project SYNC35 and the generous help and contribution by Phil Archer,
http://philarcher.org. Naturally all errors and omissions are only my own.

4 See http://www.wacapps.net/web/portal for more details.
5 See http://www.sync3.eu for more details.


