
RDFaCE – The RDFa Content Editor

Ali Khalili and Sören Auer

Universität Leipzig, IfI/BIS/AKSW, Johannisgasse 26, 04103 Leipzig, Germany
{lastname}@informatik.uni-leipzig.de, http://aksw.org

Recently practical approaches for managing and supporting the life-cycle of
semantic content on the Web of Data made quite some progress. However, the
currently least developed aspect of the semantic content life-cycle is the user-
friendly manual and semi-automatic creation of rich semantic content. In this
paper we present the RDFaCE (RDFa Content Editor) approach for combin-
ing WYSIWYG text authoring with the creation of rich semantic annotations.
WYSIWYG text authoring is meanwhile ubiquitous on the Web and part of
most content creation and management workflows. It is part of Content Man-
agement Systems, Weblogs, Wikis, fora, product data management systems and
online shops, just to mention a few. Our goal with this work is to integrate the
semantic annotation directly into the content creation process and to make the
annotation as easy and non-intrusive as possible. The RDFaCE implementation
is open-source and available for download together with an explanatory video
and online demo at http://aksw.org/Projects/RDFaCE.

The RDFaCE system architecture is depicted in Figure 1 and consists of three
layers. The foundation layer on which we ground the RDFaCE plugin includes
the TinyMCE Rich Text Editor(http://tinymce.moxiecode.com). This open
source HTML editor was chosen because it is very flexible to extend and is used in
many popular Content Management Systems (CMS), blogs, wikis and discussion
forums, etc. Therefore, by focusing efforts on this one particular editor, it is
possible to quickly propagate accessible RDFa authoring practices to a number
of other tools. RDFaCE includes the following components:

Annotator UI uses the TinyMCE API as well as jQuery UI to create user
friendly user interfaces for RDFa content editing. RDFa DOM Manipulator is
responsible for manipulating the Document Object Model (DOM) according to
the desired RDFa annotation. The main goal of the Inline Semantic Visualizer is
to provide a kind of on-demand visualization which can be included/excluded on
the fly within the WYSIWYG content editing. RDF Triple Browser and Editor
extracts the RDF triples embedded in the text and provides the edit and delete
functionality for these triples. Online Resource Suggester provides the user with
a set of accessible online resources. In order to perform this task, it accesses a
number of external Web APIs. RDFa Proxy for Enricher APIs acts as a proxy to
make the output of enricher APIs (i.e. NLP text annotation services) consumable
as RDFa.

To facilitate semantic annotation of content, RDFaCE also uses a number of
external Web APIs. Online APIs are invoked to carry out the following functions:

– RDF Namespace Lookup: In order to avoid that users have to type com-
plete URIs, common namespace prefixes can be used everywhere in RDFaCE.

http://aksw.org
http://aksw.org/Projects/RDFaCE
http://tinymce.moxiecode.com


Fig. 1. RDFaCE system architecture.

These are looked-up using the prefix.cc service. Furthermore, in case users
want to add a new property for which they do not even know an appropriate
vocabulary, RDFaCE can look-up an appropriate vocabulary and property
resource using the Swoogle (http://swoogle.umbc.edu/) service.

– Online Resource Locating: Finding an appropriate URI for the resources
which are selected by users can facilitate annotation process to a good ex-
tend. When users select a part of the text and want to create a statement
about the respective entity, the online resource locator will do a Sindice
(http://sindice.com) search to find suitable resources that match with
the users selected item.

– Semantic Text Enrichment: Starting to annotate a document from the
scratch is very tedious and time consuming. There are already some Nat-
ural Language Processing (NLP) APIs available on the Web which extract
specific entities and relations from the text. By using these APIs, we can
provide a good starting point for further user annotations. Users then can
modify and extend these automatically pre-annotated content. RDFaCE cur-
rently uses the OpenCalais, Ontos, Alchemy, Extractiv and Evri1 APIs to
enrich the text. Besides annotation by each individual API, RDFaCE sup-

1 OpenCalais - http://www.opencalais.com, Ontos - http://www.ontos.com,
Alchemy - http://www.alchemyapi.com, Extractiv - http://extractiv.com and
Evri - http://www.evri.com

prefix.cc
http://swoogle.umbc.edu/
http://sindice.com
http://www.opencalais.com
http://www.ontos.com
http://www.alchemyapi.com
http://extractiv.com
http://www.evri.com


Fig. 2. The four views for semantic text authoring.

ports combining the results of multiple NLP APIs which yields in superior
performance compared to each individual.

As shown in Figure 2, RDFaCE supports four different views for semantic
text authoring. The user can easily switch between these views and even use
them in parallel. The views are syncronized so that applying changes in one of
the views automatically updates other views.

WYSIWYG View. The What-You-See-Is-What-You-Get view is the classical
interface for rich-text authoring and used by authors, journalists etc. WYSI-
WYG text authoring is meanwhile ubiquitous on the Web and part of Content
Management Systems, Weblogs, Wikis, fora, product data management systems
and online shops, just to mention a few.. WYSIWYG implies a user interface
that allows the user to view something very similar to the end result while the
document is being created.

WYSIWYM View. The What-You-See-Is-What-You-Mean view is an exten-
sion of the WYSIWYG view, which highlights named entities and other seman-
tic information. The highlighting is realized with special CSS3 selectors for the
RDFa annotations. They are thus easily configurable in terms of color borders,
backgrounds etc. When pointing with the mouse on a highlighted annotation
RDFaCE shows additional information concerning the particular annotation as
a tooltip. RDFaCE also supports editing in the WYSIWYM view by letting a
user select entities she wants to annotate and provisioning of respective annota-
tion functionality either via the context menu or a specific form, which opens as
an overly.



Fig. 3. Integration of RDFaCE into Wordpress.

RDF Triple View. This view summarizes all the facts, which can be extracted
from the annotated text. It provides a deeper semantic view when compared to
WYSIWYM view. There might be some triples not visible in the WYSIWYM
view (e.g. annotations hidden using the CSS display:none style) but visible
in this view. The triple view is (as all other views) updateable, i.e. facts can
be directly deleted, which results in the removal of the corresponding RDFa
annotations. The triple view is useful for curators and to a lesser extend for the
authors for quickly verifying that entities and facts were correctly annotated.

Source Code View. Finally, the source code view shows the HTML source
of the article including the RDFa annotations. This view is primarily intended
for software engineers supervising the publication workflow as well as knowledge
engineers.

The RDFaCE approach is very versatile and can be applied in a vast number
of use cases. rNews (http://dev.iptc.org/rNews) as a proposed standard for
using RDFa to annotate HTML documents with news-specific metadata, On-
toWiki (http://ontowiki.net) as a tool for collaborative semantic content au-
thoring and Wordpress (http://wordpress.org) as the most popular blogging
platform are some of the RDFaCE use cases.

Related Work : There are already a few RDFa editors available. Loomp (http:
//loomp.org), RDFAuthor (http://aksw.org/Projects/RDFauthor) and RAD-
iFy (http://duncangrant.co.uk/radify/) are some of the related works in this
area.

http://dev.iptc.org/rNews
http://ontowiki.net
http://wordpress.org
http://loomp.org
http://loomp.org
http://aksw.org/Projects/RDFauthor
http://duncangrant.co.uk/radify/

	RDFaCE – The RDFa Content Editor

