

 Title: F# Type Providers – Unleashing the Semantic Web with Programming Languages

Abstract: The Semantic Web and the Linking Open Data initiative address the need for machine-readable Web content where the Web is no longer seen as
mainly a web of documents, but rather a web of objects or entities with relations between them. And yet, it does take a certain amount of effort to create
these entities and relations at web scale. We will show how programming languages can help with the democratization of the authoring task.
The worlds of programming languages and the semantics web seem universes apart. However, in this talk we will show how a simple and intuitive change in
programming language architecture can lead to a wonderful union between these two worlds, combining the simplicity and power of modern professional
programming tools with the masses of organized data appearing through the structured, organized, schematized data sources now populating the web.

In particular, the talk will focus on the following aspects:

 F# type providers and their applications to strongly typed programming with web ontologies and other rich structured information sources
 Challenges and examples of writing type providers, and research challenges for future developments in the combination of languages and rich structured

information sources

Requirement: Internet connectivity for demos (demos will be extracted from the tutorial at http://research.microsoft.com/apps/video/dl.aspx?id=150061)
Bios:

Don Syme is a Principal Researcher at Microsoft Research, Cambridge. He has been a key contributor to the design of the very widely used C# programming
language, in C# 2.0 Generics, and is the architect, researcher and designer of the F# programming language, a strongly typed functional programming
language and sponsored jointly by Microsoft Research and the Microsoft Developer Division. His research interests are about bringing data and services into
the programming experience. http://research.microsoft.com/en-us/people/dsyme/

Evelyne Viegas is the Director of Semantic Computing at Microsoft Research, Redmond, U.S.A. In her current role Evelyne is building initiatives which focus
on information seen as an enabler of innovation, working in partnership with universities and government agencies worldwide. In particular she is creating
programs around computational intelligence research to drive open innovation and agile experimentation via cloud-based services; and projects to advance
the state-of-the-art in knowledge representation and reasoning under uncertainty at web scale. http://research.microsoft.com/en-us/people/evelynev/

F# 3.0
Integrating functional
programming with rich
structured information sources

Don Syme, Principal Researcher, Microsoft Research,
Cambridge, UK

Today’s talk is very simple

Proposition 1
The world is information-rich

Proposition 2
Modern applications are

information-rich

Proposition 3
Our languages are information-sparse

Proposition 4
This is a problem

With F# we want to help fix this…

The mechanism we’re adding
to F# is called Type Providers

Type Providers
=

Language Integrated Data and
Services

But first…

What is F# and why should I care?

F# is…

...a practical, functional-first

programming language that allows you

to write simple code to solve complex

problems.

F# and Open Source

F# 2.0 compiler+library open source drop

Apache 2.0 license

www.tryfsharp.org

http://blogs.msdn.com/dsyme

http://www.tryfsharp.org/
http://blogs.msdn.com/dsyme

Example #1 (Power Company)

I have written an application to balance the national
power generation schedule … for an energy company.

...the calculation engine was written in F#.

The use of F# to address the complexity at the heart of
this application clearly demonstrates a sweet spot for the
language … algorithmic analysis of large data sets.

Simon Cousins (Eon Powergen)

Task #1: The names of the Amino Acids, as data

Task #2: A Chemical Elements Class Library

Task #3: Repeat for all Sciences, Sports,
Businesses, …

Language Integrated Web
Data

// Freebase.fsx
// Example of reading from freebase.com in F#
// by Jomo Fisher
#r "System.Runtime.Serialization"
#r "System.ServiceModel.Web"
#r "System.Web"
#r "System.Xml"

open System
open System.IO
open System.Net
open System.Text
open System.Web
open System.Security.Authentication
open System.Runtime.Serialization

[<DataContract>]
type Result<'TResult> = {
 [<field: DataMember(Name="code") >]
 Code:string
 [<field: DataMember(Name="result") >]
 Result:'TResult
 [<field: DataMember(Name="message") >]
 Message:string
 }

[<DataContract>]
type ChemicalElement = {
 [<field: DataMember(Name="name") >]
 Name:string
 [<field: DataMember(Name="boiling_point") >]
 BoilingPoint:string
 [<field: DataMember(Name="atomic_mass") >]
 AtomicMass:string
 }

let Query<'T>(query:string) : 'T =
 let query = query.Replace("'","\"")
 let queryUrl = sprintf "http://api.freebase.com/api/service/mqlread?query=%s"
"{\"query\":"+query+"}"

 let request : HttpWebRequest = downcast WebRequest.Create(queryUrl)
 request.Method <- "GET"
 request.ContentType <- "application/x-www-form-urlencoded"

 let response = request.GetResponse()

 let result =
 try
 use reader = new StreamReader(response.GetResponseStream())
 reader.ReadToEnd();
 finally
 response.Close()

 let data = Encoding.Unicode.GetBytes(result);
 let stream = new MemoryStream()
 stream.Write(data, 0, data.Length);
 stream.Position <- 0L

 let ser = Json.DataContractJsonSerializer(typeof<Result<'T>>)
 let result = ser.ReadObject(stream) :?> Result<'T>
 if result.Code<>"/api/status/ok" then
 raise (InvalidOperationException(result.Message))
 else
 result.Result

let elements = Query<ChemicalElement
array>("[{'type':'/chemistry/chemical_element','name':null,'boiling_point':null,'atomic_mass
':null}]")

elements |> Array.iter(fun element->printfn "%A" element)

How would we
do this today?

Language Integrated
Data Market Directory

F# + Semantic Web?

type SQL = SqlDataConnection<"Server='.\\SQLEXPRESS'..">

type EmeaSite = SharePointSite<"http://myemea/">

without
explicit

codegen

strongly
typed

extensible,
open

Summary

The world is information rich

Our programming needs to be information-
rich too

The Type Provider Manifesto?

Consume anything! Directly!

Strongly typed! No walls!

