Everything Self-Service:
Linked Data Applications with the Information Workbench

Peter Haase, Michael Schmidt
fluid Operations AG
Agenda

• Linked Data in the Enterprise

• Challenges

• The Information Workbench Platform

• Solution Areas and Application Scenarios

• Conclusions
Increasing Popularity of Linked Data

- **Linked Data**
 - Set of standards, principles for publishing, sharing and interrelating structured knowledge
 - From data silos to a **Web of Data**
 - RDF as data model
 - SPARQL for querying
 - Ontologies to describe the semantics

- **Linked Open Data of Sep 2010**
 - 25 billion triples
 - 395 million RDF links

- **Covering various domains**
 - Media
 - Life Science
 - Geography
 - Publications
 - ...
Benefits of Linked Data in the Enterprise

• **Enterprise Data Integration**
 • Semantically integrate and interlink data scattered among different information systems
 • Linked Data standards as Lingua Franca
 • No global schema needed up-front, dynamic integration of new data sources

• **Openness and Accessibility of Enterprise Data**
 • Shared and agreed identifiers for data access inside the enterprise
 • Simplified publishing and sharing of data

• **Value Add by Linking to Linked Open Data**
 • Cross the chasm between enterprise-internal and public data
 • Enrichment and contextualization through interlinking

• **Innovative Applications through Semantic Technologies**
 • Leverage semantic technologies for improved search and presentation
 • Allow for addressing expressive information needs
Example: Integrated Knowledge Management for the Life Sciences

Private Data Sources

Public Data Sources
Example: Integrated Knowledge Management for the Life Sciences

Search, Interrogate and Reason

Visualize, Analyze and Explore

Capture and Augment Knowledge

Integrated data graph over all data sources

Private Data Sources

Public Data Sources
Challenges in Building Linked Data Applications

- **Discovery** and automated integration of relevant data sources

- **Heterogeneity** in various dimensions
 - Location, ownership of data (internal / external, open / closed)
 - Identifiers, structure, and vocabularies
 - Structured and unstructured data

- **Quality** of Linked Data
 - Various forms of imperfection (erroneous, incomplete, imprecise data)
 - Trustworthiness

- **End-user oriented** interfaces and interaction paradigms
 - Abstraction from technical details of Linked Data
 - Interfaces that operate on large amounts of data, flexible and dynamic schemas
 - Meaningful aggregation of the data
 - Support for expressive information needs, while retaining intuitive interfaces
The Information Workbench

- **Platform** for Linked Data Application Development
 - Base functionality to build applications without any programming
 - SDK for easy extensions

- **Covering the all aspects of interacting with Linked Data**
 - Discovery of data sources
 - Integration of data sources
 - Visualization
 - Search and exploration
 - Advanced analytics
 - Collaborative authoring of data

- **Targeted at**
 - Linked Open Data
 - Linked Enterprise Data
 - Combinations thereof
Information Workbench Architecture

- Extensible, widget-based UI
 - Resource-centric presentation
 - Living UI, which exploits semantics of underlying data
 - Large collection of predefined widgets, easily extendable

- Search and information access
 - Coexistence of structured and unstructured data
 - Different search paradigms (keyword and faceted search, semantic query completion)

- Data integration through providers
 - Convert data from a data source into the RDF data format
 - Customizable, easily extensible
 - Use of public LOD registries (CKAN)
 - Support for Google Refine
Self-Service Application Development

1. Linked Open Data Discovery
 - Access to data registered at global registries, e.g. ckan.org, data.gov, ...
 - Visually explore data sets and identify those relevant for your application

2. Data Integration
 - Integrate the data sets with the click of your mouse
 - Add providers for internal and external legacy data
 - Interlink different data sets

3. Customization of the Frontend
 - Declaratively customize the user interface using a selection of widgets

4. Extending the Platform with own Components
 - Use APIs and SDKs to implement your own widgets, providers, etc.
Discovery of Data Sets

- Access to data registered at global registries, e.g. ckan.org, data.gov, ...
- Based on metadata vocabularies (voID, DCAT)
- Sort/filter data sets by topic, license, size and many more facets to identify relevant data
- Visually explore data sets
Data Integration

• Integrate relevant Linked Data sources with the click of a button
• Support for different distributions of the data
 • RDF dumps
 • SPARQL endpoints
 • URI lookup
• Add providers for internal and external legacy data sources
• Interlink different data sets
 • Exploit existing links and mappings between data sources
 • Use third party mappings
 • User-generated mappings
 • Integrate components for automated link/mapping discovery
Semantic Wiki + Widgets as Self-service Linked Data Frontend

- **Semantic Wiki** for **collaborative authoring** and linking of unstructured and structured semantic data
- **Declarative specification** of the UI based on available pool of widgets and simple wiki-based syntax
- Widgets have direct access to the database
- Embed dynamic data, visualizations, forms, etc.
- Type-based template mechanism
Information Workbench Self Service Platform

- Create your own instance of the Information Workbench at the click of a button
- Select from pre-defined configurations for certain application domains
- Provision in private or public cloud environments (such as Amazon EC2)
Live Demo: ISWC 2011 Explorer

http://data.semanticweb.org/conference/iswc/2011
Information Workbench Application Areas

Knowledge Management in the Life Sciences

Digital Libraries, Media and Content Management

Intelligent Data Center Management
Intelligent Data Center Management

BEFORE
- Business data not interlinked with technical data
- CXOs struggle to have an integrated view on the resources employed in the data center

NOW
- Semantic, resource-centric view on data: link business data with data center resources and interrogate heterogeneous resources in a unified way
- User-defined dashboards, queries, historical data management for analytics and reporting purposes
Integrated View on the Data Center
Link Business Data To Data Center Resources

- **E.g.:** link your customers to their Virtual Landscapes using semantic annotations; visually explore the connections between the business information and the data center resources on-demand

- **Use Case: Root Cause Analysis and Error Handling**
 - Identify which customer’s systems and applications are affected when an error on the storage level occurs
 - Determine where errors on the application level are coming from
 - Relate events to each other
 - Document and compare solutions for events
 - → allows fast reaction for error handling and ensures SLA enforcement
Share Knowledge Within Your Company

Collaborative Acquisition and Augmentation of Knowledge with Semantic Wiki Technology

- Use Case: Technical Documentation and Responsibility Management
 - Use Wiki to collaboratively maintain technical documentation and best practices
 - Interlink hardware resources with documentation in a central place
 - Assign responsibilities directly to technical resource

Wiki Page in Edit Mode ...

... and Displayed Result Page
Analytics and Reporting

Embed dynamic, user-defined charts directly into Semantic Wiki pages
- E.g.: create tabular summaries of your data and existing connections; specify user-defined charts and dashboards; generate reports based on historical data

Use case: Performance Monitoring and Capacity Planning
- Monitor the performance & usage of your infrastructure over time using historical data
- Forecast when new infrastructure resources need to be ordered
- Analysis of the impact of new hardware options on utilization rates

Use case: Cost and Demand Forecasting
- Keep track of infrastructure costs for each customer / project
- Determine what infrastructure resources will be needed when and for which project
- Compare various infrastructure options in terms of cost

Example: Employed VMs over Time grouped by Power Status
Summary

• Enormous potential for Linked Data in the enterprise

• Information Workbench as platform for implementing Linked Data solutions

• Addressing all aspects of interacting with Linked Data
 • Data Integration
 • Collaborative Knowledge Management and Authoring
 • Intelligent Data Access and Analytics

• “Self-service”-style application development
 • Linked Open Data discovery
 • Automated data integration
 • Customization of the frontend
 • Extensible via SDK
Visit our exhibitor booth
or arrange a private live demo!

CONTACT:
fluid Operations
Altrottstr. 31
Walldorf, Germany

Email: sales@fluidOps.com
website: www.fluidOps.com
Tel.: +49 6227 3846-527