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Abstract. Business-critical legacy applications often rely on relational
databases to sustain daily operations. Introducing Semantic Web tech-
nology in newly developed systems is often difficult, as these systems
need to run in tandem with their predecessors and cooperatively read
and update existing data.
A common pattern is to incrementally migrate data from a legacy system
to its successor by running the new system in parallel, with a data bridge
in between. Existing approaches that can be deployed as a data bridge in
theory, restrict Semantic Web-enabled applications to read legacy data
in practice, disallowing update operations completely.
This paper explains how our RDB-to-RDF platform OntoAccess can
be used to transition legacy systems into Semantic Web-enabled appli-
cations. By means of a case study, we exemplify how we successfully
made a bridge between one of our own large-scale legacy systems and its
long-term replacement. We elaborate on challenges we faced during the
migration process and how we were able to overcome them.

1 Introduction

The field of software engineering is in a constant state of flux. New paradigms,
programming languages, frameworks, and tools gain tremendous momentum all
of a sudden – and then they sink into oblivion as quickly as they have emerged.
Short time-to-marked intervals are therefore critical for the success of new tools,
be it in an industrial context or in research.

In contrast to short-lived tools, the body of acquired knowledge of a company
usually evolves less rapidly and sometimes even remains relevant for decades,
stored as data in different, mostly relational databases (RDB). This inevitably
leads to challenges, when different generations of applications have to operate
on this data.

There are legacy systems relying on a relational view of the database—these
applications can not easily be upgraded or simply taken offline and thrown away
when requirements change. Legacy systems are often crucial for daily operations
and therefore need to be highly available. They are inherently valuable to many
organizations but bear typical problems: Maintenance and especially further
development have become difficult and costly.



These circumstances and new business opportunities emerging with the ad-
vent of paradigms, such as Service-Oriented Architectures and the Semantic
Web, lead to the development of next-generation systems. While new develop-
ment opens the door for incorporating recent best-practices and state-of-the-art
technologies, the newly developed applications usually will run in tandem with
legacy systems and still need to access legacy databases.

In such scenarios, it is common to make a bridge to the new town, that is,
to incrementally migrate data from a legacy system by running the new system
in parallel, with a data bridge in between [8]. Tools such as D2R Server [4]
and OpenLink Virtuoso [9] serve RDF views on relational databases. However,
they restrict Semantic Web-enabled applications to read legacy data, disallowing
update operations completely.

In this paper, we describe how our RDB-to-RDF platform OntoAccess [19]
can be used to facilitate the transition from legacy systems to Semantic Web-
enabled applications in practice. OntoAccess provides a semantic layer on top
of existing relational databases. It enables RDF-based read and write access to
relational data. Based on mappings that bridge the conceptual gap between RDF
and the relational model, a mediator translates Semantic Web requests on-the-
fly to SQL. This enables relational and RDF-based applications to cooperate
on the same data and to further exploit the advantages of the well established
database technology such as query performance, scalability, transaction support,
and security.

The contribution of this paper is a case study on how we successfully used
OntoAccess to advance our Eclipse-based software evolution analysis frame-
work Evolizer [13] to Sofas [17], a service-oriented, distributed, and collab-
orative software analysis platform. We describe use cases where existing RDB-
to-RDF approaches are insufficient and an approach such as OntoAccess is
needed.

The remainder of this paper is structured as follows. Section 2 gives a brief
introduction to the two systems between which OntoAccess acts as a data-
bridge: Evolizer and Sofas. OntoAccess itself bridges the conceptual gap
between the relational model and RDF. It is described in Section 3. In Section 4,
we present the case study on how we successfully used OntoAccess to advance
Evolizer to Sofas. Related work in the context of RDB-to-RDF mapping is
reviewed in Section 5. Section 6 concludes this paper with a summary.

2 Background

In this section, we describe our two platforms for software analysis that run
in tandem and are able to share data thanks to OntoAccess. The first plat-
form, Evolizer, is considered to be a legacy system, whereas Sofas represents
our latest ambitions in providing a scalable, distributed means to analyze the
evolution of a software system.



2.1 Evolizer

In the past, we have developed Evolizer [13] – a plug-in-based software evolu-
tion analysis and research platform, tightly woven into the Eclipse IDE.

At its core, Evolizer is based on the idea of a Release History Database
(RHDB) [11]. It is implemented as a set of Eclipse plug-ins and integrates infor-
mation originating from different software repositories, such as version control,
issue tracking, mailing lists, etc. The combination of this diverse, yet intercon-
nected data allows one to uncover and analyze the many different facets of the
evolution of a software system and its parts. Examples are the system’s fine-
grained change history or bug-proneness over time, as well as a complete source
code model.

Evolizer has become a typical legacy system over time: While the platform
is still in active use, it becomes harder to adapt it to new requirements and
recent advances in technology. The tight coupling to Eclipse makes it hard to
adapt and re-use Evolizer’s tools and algorithms in new environments such as
in a service-oriented context. Further, the RHDB is based on classical relational
database technology. It is therefore difficult to interlink information stored in
the RHDB with other external data sources, because the relations that we store
are local – not universal – and our entities lack unique resource identifiers that
can be dereferenced over the Internet. Synergies with related approaches are
therefore difficult to exploit. Evolizer’s models also lack explicit semantics,
such as cardinality, transitivity, symmetry, and so on. Bringing Evolizer and
its RHDB to the Semantic Web would therefore be desirable.

Evolizer is still very valuable and our RHDB contains data about the soft-
ware life-cycle of hundreds of systems. Re-importing this vast amount of data
from version control and bug tracking systems would take months, and some of
these repositories might not even be available online anymore.

To overcome these limitations, we are in need of a gradual migration path
from Evolizer to the next generation of software evolution analysis platforms,
allowing us to run the existing platform together with its replacement for the
years to come.

2.2 SOFAS

Evolizer allowed us to combine and analyze different aspects of a software’s
evolution and its development. However, we realized that a big potential lies in
having analyses easily accessible and composable, without platform and language
limitations, and not having to install and configure particular tools. Based on
these premises, we introduced the concept of “Software Analysis as a Service”
[16]: getting easy access to different analyses from various tools and providers
using Web services. We implemented that concept into a lightweight and flexible
platform called Sofas (SOFtware Analysis Services) [17].

Sofas follows the principles of a RESTful architecture [10] and allows for
a simple yet effective provisioning and use of software analyses based upon the
principles of Representational State Transfer around resources on the Web. Its



architecture is made up by three main constituents: Software Analysis Web Ser-
vices, a Software Analysis Broker, and Software Analysis Ontologies. The services
expose their functionalities and data through standard RESTful Web service in-
terfaces. The Software Analysis Broker acts as the service manager and provides
the interface between the services and the users. It contains a catalog of all the
registered analysis services with respect to a specific software analysis taxonomy.
As such, the domain of analysis services is described in a semantic way, enabling
users to browse and search for their analysis service of interest. The ontologies –
we call them SEON (cf. Section 4.2) – are used to define and represent the RDF
data consumed and produced by the different services.

3 OntoAccess as a Bridge to the New Town

OntoAccess is a RDB-to-RDF mediation platform that enables Semantic Web-
based applications to operate on relational data. It provides a semantic layer on
top of existing relational databases to enable RDF-based read and write access
to the relational data. Semantic Web requests, i.e., query and update requests,
are translated on-the-fly to SQL for execution in the database. OntoAccess
therefore eliminates the need for mirroring and synchronizing the relational data
and the RDF representation – both data models always operate on the same
state of the data. This results in a cooperative use of the data in RDF-based
as well as in relational applications. In addition, mediation allows one to fur-
ther exploit the advantages of the well-established database technology such as
query performance, scalability, transaction support, and security. The existing,
read-only RDB-to-RDF mapping approaches are limited to data warehouse-like
applications where the data can be queried and analyzed but not modified. In
comparison, OntoAccess puts relational databases on par with native RDF
triple stores by allowing read and write access to the data. This facilitates the
transition from RDB-based legacy systems to Semantic Web-enabled applica-
tions in practice.

3.1 Architectural Principles of OntoAccess

OntoAccess is designed and implemented as an extensible platform. It encap-
sulates the RDB-to-RDF translation logic in the core layer which provides the
foundation for an extensible set of data access interfaces in the interface layer.
The RDB-to-RDF core is responsible for the translation of RDF-based request
to SQL and interacts with the database system. The interface layer exposes
the functionality of the OntoAccess core to RDF-based applications via dif-
ferent data access approaches. It translates the interface-specific operations to
the basic OntoAccess operations, and results back into the interface-specific
format. This facilitates the development of additional data access interfaces be-
cause the main RDB-to-RDF translation work is performed in the core layer.
Currently, the OntoAccess platform supports data access via SPARQL [23],
SPARQL/Update [24], Linked Data [2], and various Semantic Web Frameworks,
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such as Jena, Sesame, and RDF2Go.1 The data access interfaces are accessible
via a HTTP service endpoint if deployed as a stand-alone server. Alternatively,
OntoAccess can be integrated into other applications as a library, in which
case the data access interfaces are exposed via specific APIs. Figure 1 presents
an overview of the overall architecture of OntoAccess and exemplifies how it
can be used as a data-bridge in the context of Sofas and the Evolizer RHDB.
Next, before we discuss this example in detail in Section 4, we elaborate on the
mapping principles of OntoAccess.

3.2 Mapping Principles of OntoAccess

Mediation requires a mapping from concepts in a relational database schema to
terms defined in an ontology. For OntoAccess, we developed R3M [20] as a bidi-
rectional RDB-to-RDF mapping language that incorporates the requirements of
RDF-based write access to relational databases. Existing mapping languages de-
veloped for read-only use cases are unsuitable for write access as shown in [15]
and by D2R/Update.2

R3M extends the mapping approach described in [3]. Tables of the database
schema are mapped to classes in an ontology and the attributes of those ta-
bles to properties. Special support is provided for link tables that are used to
represent M:N relationships in the relational model. As such helper constructs
are not needed in RDF, link tables are mapped to properties instead of classes.
In addition, R3M mappings contain information about datatypes, as well as in-
tegrity constraints of the database schema. This results in a mapping language
that is not as expressive as the existing, read-only languages (cf. [21]) but it
is sufficient to cover many application scenarios, including the one presented in
this paper. In general, R3M is targeted at mapping highly normalized relational
1 http://openjena.org/, http://openrdf.org/, http://rdf2go.semweb4j.org/
2 http://d2rqupdate.cs.technion.ac.il/



Listing 1.1. Example R3M Mappings

1 a ) ex : r e v i s i o n a r3m : TableMap ;
2 r3m : hasTableName "Revi s ion " ;
3 r3m : mapsToClass ver : Vers ion ;
4 r3m : ur iPat te rn "http : / / . . . / rev i s ion_%%number%%";
5 r3m : hasAttr ibute ex : revision_number , . . . .
6
7 b) ex : revision_number a r3m : AttributeMap ;
8 r3m : hasAttributeName "number " ;
9 r3m : mapsToObjectProperty ver : hasID ;

10 r3m : dbType [ a r3m : VarChar ;
11 r3m : l ength 255 ] ;
12 r3m : hasConstra int [ a r3m : NotNull ] .
13
14 c ) ex : r e l e a s e_ r ev i s i o n a r3m : LinkTableMap ;
15 r3m : hasTableName "Release_Revis ion " ;
16 r3m : mapsToObjectProperty ver : compr ises ;
17 r3m : hasSub jec tAtt r ibute ex : r r_r e l e a s e ;
18 r3m : hasObjectAttr ibute ex : r r_rev i s i on .

database schemata such as the ones generated by object-relational mappers (e.g.,
Hibernate3), and at the so-called direct mapping where an equivalent RDF repre-
sentation of the relational data is needed (e.g., for use cases as described in [12]).

Listing 1.1 presents examples of the three main mapping constructs in R3M.
The namespace prefixes used in the examples are defined as follows: r3m repre-
sents our mapping language vocabulary http://ontoaccess.org/r3m/ while ex
is used for the namespace http://example.com/mapping/ of our example map-
ping. ver represents the namespace of the SEON version control ontology http:
//evolizer.org/ontologies/seon/2010/03/versions.owl (cf. Section 4.2).
Listing 1.1a) depicts a TableMap representing the mapping of a database table
to a class in the ontology. A TableMap contains the name of the table (line 2)
and the class it is mapped to (line 3). The URI pattern (line 4, abbreviated) is
used to generate the URIs for instances of this table based on values of table at-
tributes that are specified between double percentage signs (e.g. %%number%%
where number is the name of an unique attribute such as the primary key). A
TableMap further contains a list of AttributeMaps (line 5, abbreviated).

Listing 1.1b) presents an example of an AttributeMap that maps a database
attribute to a property in the ontology. An AttributeMap contains the name of
the attribute in the database schema (line 8) and the property it is mapped to
(line 9). Additionally, an AttributeMap includes information about the datatype
of the database attribute (lines 10 and 11) as well as information about (database)
constraints defined on that attribute (e.g., a not null constraint; line 12). R3M

3 http://hibernate.org/



supports the constraints r3m:PrimaryKey, r3m:ForeignKey, r3m:NotNull, r3m-
:Default, and r3m:Check.

Listing 1.1c) shows a LinkTableMap representing the mapping of a link table
to an ontology property. A LinkTableMap specifies the name of the link table in
the database (line 15) and the property it is mapped to (line 16). A link table
always contains two foreign key attributes that point to the tables of the N:M
relationship. These attributes are represented as AttributeMaps (line 17 and 18)
that provide the names of the attributes, the foreign key references to the tables,
and the direction of the relationship (from subject to object).

4 A Case Study on Bridging Software Analysis Data

To motivate our case study, we present use cases that require interoperability be-
tween Evolizer and Sofas. These use cases need a bidirectional data exchange,
i.e., from Evolizer to Sofas and vice versa.

First, Evolizer contains data about hundreds of software systems that were
imported over the past years (cf. Section 2.1). The Sofas platform needs to
be able to access this data without the need for re-importing it. This requires
RDF-based read access to the Evolizer database. Second, Evolizer imple-
ments importers to import source code and history data from centralized version
control systems, such as CVS and SVN. Lately decentralized version control sys-
tems, such as Git or Mercurial, gained popularity. Therefore, respective import
services were developed for the Sofas platform. The data produced by these
importer services is modeled in RDF, based on the SEON ontologies described
in Section 4.2. This data is also valuable to Evolizer because existing tools
could be used to leverage it. This, however, requires RDF-based write access
to the Evolizer database. Lastly, Sofas implements an extensible framework
to compute software metrics on the data. Again, this data is modeled in RDF,
but matching relations are available in the Evolizer database schema. RDF-
based write access to the RHDB is needed to make the metrics data available to
Evolizer.

These use cases indicate that, for making a bridge between Evolizer and
Sofas, a RDB-to-RDF mapper is needed that provides RDF-based read and
write access to relational data. Whereas existing approaches are limited to read-
only queries, we developed OntoAccess that provides read and write access. In
the remainder of this section, we present the relational data model of Evolizer,
the ontology-based data model of Sofas, and how the mapping of OntoAccess
is used to bridge the conceptual gap between these two data models. We further
discuss challenges we encountered during this case study.

4.1 Data Schema of Software Analysis within Evolizer

The data schema of Evolizer consists of several distinct parts covering many
aspects of the Software Engineering domain. For this case study, we focus on
those parts that are concerned with historical aspects and with source code
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information. The history model is generic, i.e., it applies to a certain extent
to centralized version control systems, as well as to distributed ones. In the
following, we describe the most important parts of our schema. An overview of
the simplified version of the schema is given in Figure 2; the full schema consists
of approximately 40 distinct tables.

One of the core entities is Revision. A revision is a particular version of a
file; a Person, that is to say a software developer, edits a file, and commits the
modifications to the version control system. The latter tracks the date of the
commit, the reason for the modification (i.e., the commit message provided by
the developer), as well as additional information such as the number of lines that
were affected. A Release constitutes an important milestone in the life-cycle of a
software system. It is often identified by a codename and contains a snapshot of
the most recent revisions of all the files at the release data. New or experimental
features, as well as bug fixes, are often developed on a Branch. Once the code is
stable, it is merged back into the trunk.

To obtain a meaningful source code model, the system under analysis needs
to be in a consistent state. This is generally guaranteed only for a release and
therefore, for revisions that are part of a release, we can parse the source code
and instantiate a reasonable model accordingly. A revision then corresponds to
one top-level Class in Java, C#, etc. Classes have a set of members, i.e., they
contain Attributes and Methods. Classes, attributes, and methods are generalized
into Entities.

Relationships between source code entities, such as Invocations between meth-
ods, Accesses from methods to attributes, and Inheritance between classes, are
also made explicit by representing them as an association class or link table.
While they are hard to distinguish from real entities, this is the only means that
the relational model provides when we want to explicitly query for relationships.

Entities can be measured. Such a Measurement is specified by a metric, for
example ’number of lines of code’ for a class or method, or ’number of accesses’
for an attribute, and the value that has been measured.

4.2 Ontologies of Software Analysis within SOFAS

To describe the data produced and consumed by Sofas, we developed a family of
Software Evolution ONtologies (SEON). They describe different aspects of soft-
ware and its evolution, such as version control, issue tracking, static source code
structure, change coupling, software design metrics, and so on. SEON is orga-
nized as several ontology pyramids. For each of the major subdomains, we have
developed higher level ontologies defining their common concepts. For system-
specific or language-dependent concepts we developed some concrete low-level
ontologies. For instance, there is a high-level version control ontology and several
low-level ontologies for concrete version control systems, such as CVS, SVN, and
Git, that extend the high-level version control ontology. In this paper, we limit
the discussion to the main terms of the source code ontology and the version con-
trol ontology. The source code ontology models the static source code structures
based on the FAMIX meta model. It is therefore similar to the Evolizer data



Table 1. Source Code Ontology Overview

Class: Class Class: Method
→ declaresMethod : Method → accessesField : Field
→ declaresField : Field → hasParameter : Parameter
→ isReturnTypeOf : Method → invokesMethod : Method
→ isSubclassOf : Class → hasReturnClass : Class
→ isSuperclassOf : Class → isInvokedByMethod : Method
→ hasName : xsd:string → isMethodOf : Class
Class: Field → hasName : xsd:string
→ isDeclaredFieldOf : Class Class: Parameter
→ isAccessedByMethod : Method → isParameterOf : Method
→ hasName : xsd:string → hasName : xsd:string

Table 2. Version Control Ontology Overview

Class: Version Class: ChangeSet
→ hasID : xsd:string → hasCommitDate : xsd:date
→ follows : Version Class: Branch
→ precedes : Version → hasTag : xsd:string
→ hasCreationDate : xsd:date Class: Release
→ linesAdded : xsd:int → hasReleaseDate : xsd:string
→ linesDeleted : xsd:int → hasTag : xsd:string
→ hasMessage : xsd:string

schema described in the previous section. Table 1 provides an overview of the
main classes and properties of the SEON source code ontology. The full ontology
covers many more concepts such as interfaces, local variables, and exceptions.

The version control ontology models the structure of version control systems
and is based on the data model described in [11]. Table 2 provides an overview
of the main classes and properties of the SEON version control ontology.

4.3 OntoAccess as a Bridge to the New Town of Software Analysis

OntoAccess bridges the conceptual gap between the RDB-based Evolizer
and the Semantic Web-enabled Sofas. It introduces a RDB-to-RDF mapping
and provides on-the-fly translation of RDF-based read and write requests to the
Evolizer RHDB. Table 3 and Table 4 contain an overview of the mapping in a
schematic representation. Again, we focus in the presentation of the mapping on
the parts of the Evolizer RHDB that are relevant to this case study. The map-
ping uses the following namespace declarations. ver for the SEON version con-
trol ontology http://evolizer.org/ontologies/seon/2010/03/versions.owl,
top for http://evolizer.org/ontologies/seon/2010/03/top.owl, java for
the SEON source code ontology http://evolizer.org/ontologies/seon/2009/
06/java.owl, and foaf for http://xmlns.com/foaf/0.1/. Table 3 lists the
mapping of tables from Figure 2 that represent a domain concept and their
attributes. The table consists of four columns. The first names the table as in



Table 3. Mapping Overview Part I

table → class attribute → property
Revision → ver:Version number → ver:hasID

previousRevision → ver:follows
nextRevision → ver:precedes
date → ver:hasCreationDate
linesAdded → ver:linesAdded
linesDeleted → ver:linesDeleted
message → ver:hasMessage

Transaction → ver:ChangeSet start → –
end → ver:hasCommitDate

Branch → ver:Branch name → ver:hasTag
File → top:File path → top:filePath
Release → ver:Release name → ver:hasTag

date → ver:hasReleaseDate
Person → foaf:Person name → foaf:name

email → foaf:mbox
Entity → – isAbstract → java:isAbstract

isStatic → java:isStatic
Class → java:Class
Method → java:Method returnType → java:hasReturnType
Attribute → java:Field
Measurement → met:SoftwareMetric metric → met:hasName

value → met:hasValue

Figure 2 and the second the class in the ontology it is mapped to. Column 3
contains the attributes of the respective table and their mapping to properties
depicted in Column 4. A dash in the Columns 2 or 4 means that there is no
mapping. The table Entity is not mapped to a class in the ontology but its at-
tributes are mapped to properties. Entity is just a super type of several of the
other concepts and only those (sub-)concepts are represented in the ontology
(cf. Section 4.4).

Table 4 lists the mapping of link tables that represent M:N relationships in
RDBs. As RDF provides different means to represent M:N relationships, such
helper constructs are not needed and those tables are mapped to ontology prop-
erties instead. The table consists of three columns. The first names the link
tables that are represented in Figure 2 as connecting lines between two concepts
or as explicit concepts themselves. In the first case, the name is composed of the
two participating table names separated by an underscore. Column 2 lists the
property that each link table is mapped to. Column 3 lists the corresponding in-
verse property. For instance, the relationship from Release to Revision is mapped
to the property ver:comprises and the inverse relationship from Revision to
Release is mapped to the property ver:appearsIn.



Table 4. Mapping Overview Part II

link table → property : inverse property
Release_Revision → ver:comprises : ver:appearsIn
Branch_Revision → ver:comprises : ver:isOn
Transaction_Revision → ver:comprises : ver:commitedIn
File_Revision → ver:hasVersion : ver:belongsTo
Person_Revision → – : ver:committedBy
Class_Revision → ver:hasSource : –
Method_Class → java:isDeclaredMethodOf : java:declaresMethod
Attribute_Class → java:isDeclaredFieldOf : java:declaresField
Measurement_Entity → met:isMetricOf : met:hasMetric
Inheritance → java:hasSubClass : java:hasSuperClass
Invocation → java:invokesMethod : java:isInvokedByMethod
Access → java:accessField : java:isAccessedByMethod

4.4 Discussion

In our case study, we showed how OntoAccess has been successfully deployed
to make a bridge to the new town. It provides a gradual migration path from
a legacy system such as Evolizer, to a new platform, in our example Sofas.
We demonstrated how OntoAccess bridges the conceptual gap between the
relational data model of Evolizer and the RDF-based Sofas. We further moti-
vated that existing, read-only RDB-to-RDF mapping approaches are unsuitable
for this application scenario as they limit RDF-based data access to read-only
queries. During this case study, we faced several challenges w.r.t. to the map-
ping in OntoAccess. In the following, we report on two major ones and the
solutions we developed to overcome them.

The first challenge is related to the representation of concept inheritance
in relational database systems. Inheritance is a central concept in the object-
oriented methodology and is therefore commonly used in object-oriented sys-
tems, including Evolizer. Relational, unlike object-relational or object-oriented
databases, do not directly support inheritance. However, there exist three princi-
pal strategies to implement inheritance in relational database schemata (cf. [14]):
table-per-hierarchy represents all classes of the inheritance hierarchy in a single
table. This table contains columns for the attributes of all classes and a special
column, called discriminator, that stores the type (i.e., class) for each instance.
Table-per-concrete-class represents each class in its own table. Each of those
tables contains columns for the attributes of the class and all super-classes up
to the root of the inheritance hierarchy. As a result, attributes of a common
super-class are duplicated in all of its sub-classes. The third strategy, called
table-per-subclass, also represents each class in its own table. In contrast to the
table-per-concrete-class strategy, the attributes of the super-class(es) are not du-
plicated as columns in the sub-classes. Instead, a shared primary key is used to
connect the tables representing classes in the inheritance hierarchy.

Evolizer uses different strategies for different inheritance hierarchies, for
example the table-per-hierarchy strategy to implement inheritance for the En-



Listing 1.2. Extended R3M Mapping Examples

1 a ) ex : method a r3m : TableMap ;
2 r3m : hasTableName "Entity " ;
3 r3m : mapsToClass java : Method ;
4 r3m : hasDi sc r iminator ex : method_type ;
5 r3m : ur iPat te rn "http : / / . . . / method_%%id%%";
6 r3m : hasAttr ibute ex : method_type , . . . .
7 ex : method_type a r3m : AttributeMap ;
8 r3m : hasAttributeName " ctype " ;
9 r3m : hasValue "Method " .

10
11 b) ex : Method a r3m : TableMap ;
12 r3m : hasTableName "Method " ;
13 r3m : mapsToClass java : Method ;
14 r3m : hasParentTable ex : en t i t y ;
15 r3m : ur iPat te rn "http : / / . . . / method_%%id%%";
16 r3m : hasAttr ibute ex : method_returnType .
17 ex : en t i t y a r3m : TableMap ;
18 r3m : hasTableName "Entity " ;
19 r3m : hasAttr ibute ex : entity_uniqueName , . . . .

tity concept and its subconcepts. For the sake of this case study, we had to
add explicit support for mapping inheritance hierarchies to OntoAccess. The
table-per-concrete-class strategy was mappable out-of-the-box since it defines
one table per class and the tables are independent from each other. Mapping the
other two strategies required support for features such as discriminator columns
and relating tables in a parent-child relationship. We addressed this limitation
by adding explicit mapping constructs to the OntoAccess mapping language.
First, discriminator columns were added to provide support for the table-per-
hierarchy strategy. Since support for mapping a subset of the columns in a table
already exists, it is possible to provide multiple mappings for tables that rep-
resent all classes within an inheritance hierarchy (one mapping for each class).
Each mapping only contains the respective subset of the columns and a descrip-
tion of the discriminator column with its name and value. Listing 1.2a) depicts a
concrete mapping example that is using a discriminator column. We also added
a mapping construct for relating two tables to each other in a parent-child rela-
tionship to provide support for the table-per-subclass strategy. The mapping of a
table can reference another table as its parent table. This enables OntoAccess
to detect that a concept from the application domain is split among multiple
tables in the database schema. As a result, the involved tables can automatically
be joined (on the primary key). Listing 1.2b) depicts a concrete mapping exam-
ple that is using a parent table reference. These two extensions to R3M enable
support for mapping the relational representations of concept inheritance with
all three strategies.



The second challenge is related to defining the RDB-to-RDF mappings. Map-
pings in OntoAccess are encoded in RDF which makes them well-suited for
automatic processing by machines but hinders the accessibility for human users.
Manually defining such mappings is a time-consuming and error-prone task,
consisting of mostly repetitive steps. Therefore, tool support for defining map-
ping is indispensable in more complex application scenarios where the number of
database tables and columns is of significance. We built a tool [6] to ease the def-
inition of OntoAccess mappings. It semi-automatically generates a mapping
from a RDB schema in two steps. First, it automatically generates a basic map-
ping, based on information extracted from the schema catalog of the database
system. Terms of the target ontology are also generated in this step, based on ta-
ble and column names in the database schema. Next, the tool displays a graphical
editor for refining the mapping. This step is mainly concerned with replacing the
generated terms with actual terms from the target ontology. The tool further
provides validation of existing mappings to catch errors from manual editing.
The tool is implemented as a plug-in for the ontology editor Protégé4 to enable
quick access to the definition of the target ontology.

5 Related Work

D2R Server [4] is an approach for publishing existing relational databases on the
Semantic Web. Based on mappings expressed in the D2RQ [5] mapping language,
it enables browsing the relational data as RDF via dereferenceable URIs (i.e.,
as Linked Data). Further, support for the SPARQL query language is provided.
D2R is limited to read-only data access, updating RDF data is not supported.

The Virtuoso Universal Server features RDF Views [9] to expose relational
data on the Semantic Web. A declarative Meta Schema Language is used for
defining the mapping of SQL data to RDF vocabularies. This enables the use
of SPARQL as an alternative query language for the relational data. Likewise,
Virtuoso implements a Linked Data interface to these views. RDF Views are
limited to read-only queries.

R2O [1] is an extensible and fully declarative language to describe mappings
between relational database schemata and ontologies. R2O is aimed at situations
where the similarity between the ontology and the database model is low. It has
been conceived to be expressive enough to cope with complex mapping cases
where one model is richer, more generic/specific, or better structured than the
other. This high expressiveness renders R2O mappings read-only.

The W3C has recognized the importance of mapping relational data to the
Semantic Web by starting the RDB2RDF Incubator Group5 (XG) to investigate
the need for standardization. The XG recommended [22] that the W3C initiates
a working group (WG) to define a vendor-independent RDB-to-RDF mapping
language. The RDB2RDF WG6 started its work on R2RML [7] in late 2009.
4 http://protege.stanford.edu/
5 http://www.w3.org/2005/Incubator/rdb2rdf/
6 http://www.w3.org/2001/sw/rdb2rdf/



According to their charter [18], the requirements for updating relational data
are out of scope and are therefore not addressed by the WG. It was shown
in [15] that adding write support to the R2RML approach is impractical.

6 Conclusions

In theory the Semantic Web provides a common framework that greatly fa-
cilitates data sharing and reuse across application, enterprise, and community
boundaries. In practice its wide adoption is still hampered by the fact that many
organizations have locked away their data in relational databases. Business-
critical legacy applications rely on these databases to sustain daily operations
and newly developed systems often need to run in tandem with their predecessors
until the latter can be gradually phased out. Both, the legacy systems, as well
as their successors, usually need to operate cooperatively on existing data. This
includes reads and updates. A complete paradigm shift in data representation is
therefore often extremely difficult and costly to achieve.

In this paper, we presented OntoAccess, a RDB-to-RDF mediation plat-
form that enables RDF-based read and write access to relational databases. It
greatly facilitates the transition from legacy systems to Semantic Web-enabled
applications in practice by providing a semantic layer on top of existing relational
databases. Semantic Web query and update requests are translated on-the-fly
to SQL for execution in the database system. OntoAccess therefore elimi-
nates the need for mirroring and synchronizing relational data with its RDF
representation and, in addition, allows one to further exploit the advantages of
the well-established database technology, such as query performance, scalability,
transaction support, and security.

In our case study, we have described how we successfully deployed Onto-
Access to provide a gradual migration path between two of our own large-scale
software systems, namely the legacy application Evolizer and its successor, the
Sofas platform. We identified challenges when it comes to mapping inheritance
hierarchies with OntoAccess and we have extended the latter accordingly to
support different inheritance mapping strategies. Further, we established tooling
to semi-automate the process of extracting mappings from a relational database
schema to an ontology.

In summary, judging from the experiences made in our case study, we are
confident that OntoAccess is a valuable tool that will foster the acceptance of
Semantic Web technology in practice.
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