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Abstract. Ontology learning - loosely, the process of knowledge extrac-
tion from diverse data sources - provides (semi-) automatic support for
ontology construction. As the ‘Web of Linked Data’ vision of the Seman-
tic Web is coming true, the ‘explosion’ of Linked Data provides more
than sufficient data for ontology learning algorithms in terms of quan-
tity. However, with respect to quality, notable issue of noises (e.g., partial
or erroneous data) arises from Linked Data construction. Our doctoral
researches will make theoretical and engineering contribution to ontology
learning approaches for noisy Linked Data. More exactly, we will use the
approach of Statistical Relational Learning (SRL) to develop learning
algorithms for the underlying tasks. In particular, we will learn OWL
axioms inductively from Linked Data under probabilistic setting, and
analyze the noises in the Linked Data on the basis of the learned ax-
ioms. Finally, we will make the evaluation on proposed approaches with
various experiments.

1 Motivation

Ontology learning refers to the task of providing (semi-) automatic support for
ontology construction [3], and can overcome the knowledge acquisition bottleneck
brought by the tedious and cumbersome task of manual ontology construction
[17]. Recent ontology learning approaches have attempted to learn ontology from
various types of data sets, such as text, xml, and database, but they seldom
explore learning from Linked Data. Based on URIs, HTTP and RDF, the Linked
Data project [2] aims to expose, share and connect related data from diverse
sources on the Semantic Web. Linked Open Data (LOD) is a community effort
to apply the Linked Data principles to data published under open licenses. With
this effort, a large number of LOD data sets have been gathered in the LOD
cloud, such as DBpedia, Freebase and FOAF profiles. LOD has gained rapid
progress and is still growing constantly. Until May 2009, there are 4.7 billion
RDF triples and around 142 million RDF links [2]. After that, the total has
been increased to 16 billion triples in March 2010 and another 14 billion triples
have been published by the AIFB according to [21].
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The advantages of learning from Linked Data, and what distinguishes it
from learning from other resources, are depicted in Table 1. The most common
used learning resource is HTML documents, which emerged and developed ever
since the invention of the Web. The distinguishing feature thereof is that they
constitute a large-scale data set and are generally publicly accessible. However,
the structures inside are formed through simple HTML tags, and the HTML
documents are linked to each other on document level. Compared to HTML
documents, XML documents (made to be the origin of comparison in Table 1) are
far more easily accessible to machines. XML can overcome the shortcomings of
HTML (highly human interpretable contents, not for machines) to some extent,
because XML documents contain certain structural information. The characters
of glossaries are similar to that of XML documents. Besides the links among
words (phrases), the structures inside are simple. The biggest problem of learning
from database is that it is limited in both contents and accessibility. Learners
can only learn from databases of specific domain. According to the description
and statistics described in the last paragraph, we conclude that compared with
other resources Linked Data is superior in that it is publicly available, highly
structured, relational, and large with respect to learning.

The other side of the Linked Data coin poses the challenges we are going to
cope with during the doctoral research: First, due to the publishing mechanism
of the Linked Data, it contains noises inherently [4, 1]. Hogan et al. analyzed the
types of noises which exist in the Linked Data [9]. We are particularly interested
in handling two types of noises: partiality and error. Partiality means that con-
cept assertions or the relationships between named individuals are actually true
but missed, and error means that the RDF triples are not correct (with respect
to some constraints). Take a family ontology for example. The declarations of
‘Heinz is a father’ and ‘Heinz is a male’ exist in the RDF triples, then Heinz
should have a child, however it is not declared in the ontology. This is an exam-
ple of partiality. Besides, if we know Anna has a child, and she is a female, then
Anna should not be a father, but in the ontology Anna is incorrectly declared
to be a father. This illustrates the error case. Second, the ontologies in Linked
Data are generally inexpressive. For example, one of the most popular ontologies,
DBpedia ontology3, is claimed as a shallow ontology. The TBox of this ontology
mainly includes a class hierarchy [10].

In our doctoral researches, we endeavor to inductively learn ontologies using
statistical relational learning (SRL) models. The development of SRL has been
driven by real-world needs of handling noises, relations (Figure 1). In the early
days, ML community have been focused on learning deterministic logical con-
cepts. However, those methods failed to fit perfectly for noises and large-scale
circumstances, which leads to statistical methods that ignored relational aspects
of the data, such as neural networks, generalized linear models. On the other
hand, inductive logic programming (ILP) is designed to learn first-order rules
directly which are much more expressive [18]. It is argued in [4] that inductive
learning methods, could be fruitfully exploited for learning from Linked Data.

3 http://wiki.dbpedia.org/Ontology
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Table 1. Comparison of learning from various resources. XML Document is made to
be the origin of comparison, indicated by ‘0’. ‘+’ and ‘−’ denote degree of the corre-
sponding character (above/below the origin), ‘++’ and ‘−−’ denote stronger degree
than ‘+’ and ‘−’.

Publicly Available Structured Linked Large

HTML Document + −− 0 ++

Glossary 0 − 0 0

XML Document 0 0 0 0

Database − + + −
LOD + + + +

For the last few years, the ILP community and the statistical machine learning
community have been incorporating aspects of the complementary technology
(machine learning, probability theory, and logic), which leads to the emerging
area of SRL. It attempts to represent, reason, and learn in domains with com-
plex relational and rich probabilistic structure [8]. Using SRL, two characters of
Linked Data, which distinguish Linked Data from other data sets, can be eas-
ily handled: 1) Linked Data are highly structured due to the relations between
entities and the underlying ontology. 2) Linked Data contains noises, here, as
described above, we refer particularly to partiality and error.

Fig. 1. The evolution of Statistical Relational Learning (SRL). SRL integrates tech-
nologies from machine learning, probability theory, and logic.

2 Related Work

There is an important body of previous work that our work builds on. We note a
subset of them here. Lehmann J. et al. have done a series of work on learning De-
scription Logics, and the algorithms proposed are implemented in DL-Learner.
DL-Learner is a framework for learning Description Logics and OWL from posi-
tive (and negative) examples (in ILP, ground literals of target concept are called
examples, if the ground literal is true, it is positive, negative on the contrary),
and supports several learning algorithms (CELOE, random guesser learning algo-
rithm, ISLE, brute force learning algorithm) based on ILP and machine learning
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[11]. [13] learned Description Logics ALC, and [14] learned Description Logic
ALCQ using a learning algorithm based on refinement operators, and the algo-
rithm is implemented and evaluated in the DL-Learner. AutoSPARQL is a most
recent work, which makes use of the individual assertions in the ABox, and can
be used to learn descriptions for individuals [12]. [19] proposes a log-linear De-
scriptions Logics based on EL++. It integrates log-linear model with Description
Logic EL++, and can be used to learn coherent ontologies. In [20], Völker J. and
Niepert M. propose a statistical approach, to be specific, association rule mining,
for learning OWL 2 EL from Linked Data. Fanizzi N. et al. proposed a specific
concept learning algorithm by extending FOIL algorithm, called DL-FOIL [7].
[6] works on the induction and revision of terminologies from metadata. Lisi
F.A. et al. have done a series of work on learning rules. In [15] hypotheses are
represented as AL-log rules, and the coverage relations are defined on the basis
of query answering in AL-log. Correspondingly, [16] learns DL-log rules, besides
the differences in the expressive power of the target language, it also reformulate
the coverage relation and the generality relation as satisfiability problems.

3 Proposed Approaches

In the doctoral researches, the following issues will be studied:

How to learn from noisy Linked Data? We propose to learn ontologies from
Linked Data by SRL methods. Generally speaking, SRL models combine rela-
tional representations and probabilistic learning mechanisms such as graphical
models. The majority of proposed SRL models can be categorized according to
several dimensions: 1) the representation (logic or frame-based) formalisms. 2)
probabilistic semantics (Bayesian networks, Markov networks, stochastic gram-
mar etc.). We will learn ontologies under probabilistic setting, where the learn-
ing problem is transformed into finding an optimum axiom A satisfying certain
function, such as A = arg maxA P (A,E), E denotes all assertions (facts) in the
original ontology. In SRL models, different probabilistic semantics are used for
modeling the probability distributions, and random variables corresponding to
assertions (containing partiality and errors) can encode probabilistic informa-
tion, thus is suitable for handling noises. For example, in Markov logic, the facts
and the terminology axioms correspond to a Markov network. The joint probabil-
ity distribution is defined according to this Markov network, where nodes repre-
sent assertions with probabilities. In the current work (c.f. Sect. 4.2), the axioms
are attached with weights. By maximizing the joint probability, the weights can
be learned. Each step the candidate axiom with the largest weight is selected to
be further expanded in the next step if the joint probability still increases. The
process of finding the optimum axiom can be viewed as searching in a predeter-
mined hypotheses space. This process can go in a top-down or bottom-up man-
ner. Top-down algorithms start from the most general hypothesis target v >,
and iterate to select one from candidates according to a performance criteria
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and add to the hypothesis until the stop criteria is reached. In bottom-up ap-
proaches the iteration begins at the most specific hypothesis whose right-hand
is the intersection of all possible literals.

We will propose a SRL model suitable for learning from noisy data. Currently,
a number of SRL models have been proposed from various research fields with
different application background. For example, Markov logic [5] is one of the
most recent SRL model, which combines first-order logic with undirected graph-
ical models (Markov networks). According to one of our recent works (c.f. Section
4.2), Markov logic can be applied to ontology learning from noisy data. Still the
results can be better. We argue that the performance of applying the currently
proposed SRL models to learn from Linked Data can be further improved by
proposing a SRL model particularly for this task concerning the following as-
pects: 1) As we all know, OWL builds on Description Logic basis. Today’s SRL
models use either frame-based, which contains simple relations, or logic repre-
sentation (e.g. FOL, which is more complex). In terms of expressing power, they
are not the best fit for OWL. 2) Currently SRL models are still weak in analyz-
ing the independencies inside the probabilistic model. However, independencies
play an important role in saving parameter space as well as improving the com-
puting efficiency, which should be studied carefully. Thus we will propose a more
suitable model for learning from noisy Linked Data with the goal of improving
both the learning accuracy and the learning efficiency.

How to guide the search? We will propose methods to structure the hy-
potheses space. In ILP algorithms such as FOIL [18], which learns first-order
rules, the rules are generated through adding literals to the current rule. New
literal can be of the form Q(v1, . . . , vr) (at least one vi already exists in the rule),
equal(vj , vk), or the negation of either of the first two forms. Using this kind of
approaches, it is still unknown that whether the following can be guaranteed:
1) will adding a new literal lead to a more specific concept? 2) can all concepts
be traversed? Another approach, named refinement operator, defines a mapping
S 7→ 2S on a quasi-ordered space S, thus it structures the hypotheses space
according to quasi-ordering relations, such as subsumption. A number of refine-
ment operators have been proposed, such as ALC refinement operator [13] and
ALCQ refinement operator [14]. The properties of refinement operators, such as
(weakly) complete, ensure that if an axiom should be correct according to the
Linked Data, it can be reached by the refinement operator. Current refinement
operators will be improved by, firstly, at each step, the hypotheses generated by
the refinement operator should be finite, and secondly, the refinement operator
should be designed for OWL and its profiles according to specific models. For
example, if Markov logic is chosen as the model, then in each step in the itera-
tion, the dependencies between the candidate hypotheses should be minimized,
so as to guarantee that the weights learned truly reflect the confidence of the
hypothesis (c.f. Section 4.2).
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How many partiality and errors are there? In [9], Hogan discusses com-
mon errors that can be systematically detected in RDF publishing. The results
provide a significant basis for our motivations. We are still interested in ana-
lyzing the Linked Data more semantically. The axioms we learned contain two
parts. One part of them already exist in the ontology, which can be evaluated
automatically by comparing with the original ontology. The other part of them
are not in the ontology. Given the observation that the ontologies in Linked Data
are generally inexpressive (c.f. Sect. 1), this part of axioms are not necessarily
incorrect. We will evaluate them manually. Finally, we will have a set of correct
axioms. We want to answer the question of “How many partiality and errors are
there in Linked Data?”. By querying the original ontology and comparing the
results with the learned axioms, we will propose algorithms to analyze the data
in ABox to know whether some of them are missed or some of them are wrongly
stored in the Linked Data.

4 Results and Evaluation

4.1 DLP Learning from Uncertain Data

The origin of this work can be found in [22], where we focused on learning de-
scription logic programs (DLP) from explicitly represented uncertain data. DLP
is an intermediate knowledge representation that layers rules on top of ontolo-
gies. DLP is an expressive and tractable subset of OWL, and plays an important
role in the development of the Semantic Web. We modified the performance eval-
uation criteria based on pseudo-log-likelihood in the designed ILP like algorithm
PIDLP. With the new performance evaluation criteria, uncertainties are han-
dled and meanwhile DLPs can be learned. We also tested the algorithm in two
datasets, and the results demonstrated that the approach is able to automat-
ically learn a rule-set from uncertain data with reasonable accuracy. However,
in many cases, uncertainties exist implicitly, such as in Linked Data. In what
follows, we transfer our attention to learning from noisy Linked Data without
handling explicitly specified uncertainties.

4.2 Learning ALCI from Noisy Data by Markov Logic

ALCI contains inverse role constructor in addition to the basic Description Logic
ALC. In our most recent work, we examine learning ALCI from noisy Linked
Data, attempting to take the first step towards our first proposed approach. The
procedure of learning can be viewed as searching for the optimize hypotheses
(axiom) in the hypotheses space composed of all possible axioms according to
certain criterion. In this work, Markov logic is used for handling noises. More
specifically, hypotheses are accompanied with a weight which indicate the degree
of consistency between the hypotheses and the RDF triples in the data set. In
each iteration, the weights are learned with the target of joint probability max-
imization, and we choose the hypothesis with the largest weight. The iteration
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runs until performance stops to improve. We evaluate the approach on 4 data
sets in addition to a small data set illustrating the functionality of learning def-
initions. The results demonstrate that the method performs well under noises,
and is capable of learning ALCI with an average precision of 0.68 and recall
0.59.

4.3 Evaluation

The evaluation goes in two-fold (semi-)automatically. Firstly, using ontologies
as gold standard, such as EKAW ontology, we separately treat the TBox and
ABox in the Linked Data as testing and training set. We learn ontologies from
the ABox, and evaluate the results learnt according to the TBox. Widely used
IR measures precision, recall, and F1-score are adopted here. This way, the per-
formance of the proposed approaches can be observed. Nevertheless the axioms
in TBox may still not be complete [10], and the learned axioms not in the TBox
are not bound to be wrong. Thus secondly, the part of learned axioms not in
the TBox will be manually evaluated. We assign 3 numbers to indicate the cor-
rectness of the axioms: 1-low, 2-medium, and 3-high. For each axiom, a group
of people will determine whether or not they think it is correct, and offer a
judgement represented as a number. The final result will be an average.

5 Future Works

In the future, we plan to do the following works: firstly, we will further improve
our approaches of learning OWL axioms from Linked Data (such as DBPedia)
by adopting new SRL models. By proposing mechanisms for representing OWL
axioms with probabilistic graphical models, and analyzing the independencies
inside, more accurate results and more efficient algorithms can be found. Sec-
ondly, we will work towards answering the question “How many partiality and
errors are there?”. According to the preliminary results we got from the work
(c.f. Sect. 4.2), a number of axioms we learned that are not in the Linked Data
should be correct. In addition to the analyzes carried out by Hogan et al. in [9],
we will propose algorithms to analyze the noises in the Linked Data.
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